Notes
![]() ![]() Notes - notes.io |
Recurrent neural networks (RNNs) provide state-of-the-art performances in a wide variety of tasks that require memory. These performances can often be achieved thanks to gated recurrent cells such as gated recurrent units (GRU) and long short-term memory (LSTM). Standard gated cells share a layer internal state to store information at the network level, and long term memory is shaped by network-wide recurrent connection weights. Biological neurons on the other hand are capable of holding information at the cellular level for an arbitrary long amount of time through a process called bistability. Through bistability, cells can stabilize to different stable states depending on their own past state and inputs, which permits the durable storing of past information in neuron state. In this work, we take inspiration from biological neuron bistability to embed RNNs with long-lasting memory at the cellular level. This leads to the introduction of a new bistable biologically-inspired recurrent cell that is shown to strongly improves RNN performance on time-series which require very long memory, despite using only cellular connections (all recurrent connections are from neurons to themselves, i.e. a neuron state is not influenced by the state of other neurons). click here Furthermore, equipping this cell with recurrent neuromodulation permits to link them to standard GRU cells, taking a step towards the biological plausibility of GRU. With this link, this work paves the way for studying more complex and biologically plausible neuromodulation schemes as gating mechanisms in RNNs.
One of the most widely used evaluation methods in miRNA experiments is qRT-PCR. However, selecting suitable internal controls (IC) is crucial for qRT-PCR experiments. Currently, there is no consensus on the ICs for miRNA qRT-PCR experiments in breast cancer. To this end, we tried to identify the most stable (the least expression alteration) and promising miRNAs in normal and tumor breast tissues by employing TCGA miRNA-Seq data and then experimentally validated them on fresh clinical samples.
A multi-component scoring system was used which takes into account multiple expression stability criteria as well as correlation with clinical characteristics. Furthermore, we extended the scoring system for more than two biological sub-groups. TCGA BRCA samples were analyzed based on two grouping criteria Tumor & Normal samples and Tumor subtypes. The top 10 most stable miRNAs were further investigated by differential expression and survival analysis. Then, we examined the expression level of the top scored miRNiR-361-5p is a highly stable miRNA in tumor and non-tumor breast tissue and we recommend it as a suitable reference gene for miRNA expression studies in breast cancer. Additionally, although hsa-miR-16-5p is a commonly used IC, it's not a suitable one for breast cancer studies.Collagen forms a characteristic triple helical structure and plays a central role for stabilizing the extra-cellular matrix. After a C-terminal nucleus formation folding proceeds to form long triple-helical fibers. The molecular details of triple helix folding process is of central importance for an understanding of several human diseases associated with misfolded or unstable collagen fibrils. However, the folding propagation is too rapid to be studied by experimental high resolution techniques. We employed multiple Molecular Dynamics simulations starting from unfolded peptides with an already formed nucleus to successfully follow the folding propagation in atomic detail. The triple helix folding was found to propagate involving first two chains forming a short transient template. Secondly, three residues of the third chain fold on this template with an overall mean propagation of ~75 ns per unit. The formation of loops with multiples of the repeating unit was found as a characteristic misfolding event especially when starting from an unstable nucleus. Central Gly→Ala or Gly→Thr substitutions resulted in reduced stability and folding rates due to structural deformations interfering with folding propagation.Diffuse optical tomography uses near-infrared light spectroscopy to measure changes in cerebral hemoglobin concentration. Anatomical interpretations of the location that generates the hemodynamic signal requires accurate descriptions of diffuse optical tomography sensitivity to the underlying cortical structures. Such information is limited for pediatric populations because they undergo rapid head and brain development. The present study used photon propagation simulation methods to examine diffuse optical tomography sensitivity profiles in realistic head models among infants ranging from 2 weeks to 24 months with narrow age bins, children (4 and 12 years) and adults (20 to 24 years). The sensitivity profiles changed systematically with the source-detector separation distance. The peak of the sensitivity function in the head was largest at the smallest separation distance and decreased as separation distance increased. The fluence value dissipated more quickly with sampling depth at the shorter source-detector separations than the longer separation distances. There were age-related differences in the shape and variance of sensitivity profiles across a wide range of source-detector separation distances. Our findings have important implications in the design of sensor placement and diffuse optical tomography image reconstruction in (functional) near-infrared light spectroscopy research. Age-appropriate realistic head models should be used to provide anatomical guidance for standalone near-infrared light spectroscopy data in infants.
Preliminary empirical data indicates a substantial impact of the COVID-19 pandemic on well-being and mental health. Individuals with minoritized sexual and gender identities are at a higher risk of experiencing such negative changes in their well-being. The objective of this study was to compare levels of well-being among cis-heterosexual individuals and individuals with minoritized sexual and gender identities during the COVID-19 pandemic.
Using data obtained in a cross-sectional online survey between April 20 to July 20, 2020 (N = 2332), we compared levels of well-being (WHO-5) across subgroups (cis-individuals with minoritized sexual identities, individuals with minoritized gender identities and cis-heterosexual individuals) applying univariate (two-sample t-test) and multivariate analysis (multivariate linear regression).
Results indicate overall lower levels of well-being as well as lower levels of well-being in minoritized sexual or gender identities compared to cis-heterosexual individuals. Further, multivariate analyses revealed that living in urban communities as well as being in a relationship were positively associated with higher levels of well-being.
My Website: https://www.selleckchem.com/products/AT9283.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team