Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
It can be observed from the simulation results that the oil tank vibration of the optimized system is effectively suppressed under the unbalanced excitation of two typical engine speeds. The established method and the main results can provide guidance for designers of aeroengine external structural systems, which can help to achieve superior system dynamic performances in engineering applications.Over the past four decades, space debris has been identified as a growing hazard for near-Earth space systems. With limited access to space debris tracking databases and only recent policy advancements made to secure a sustainable space environment and mission architecture, this manuscript aims to establish an autonomous trajectory maneuver to de-orbit spacecrafts back to Earth using collision avoidance techniques for the purpose of decommissioning or re-purposing spacecrafts. To mitigate the risk of colliding with another object, the spacecraft attitude slew maneuver requires high levels of precision. Thus, the manuscript compares two autonomous trajectory generations, sinusoidal and Pontragin's method. In order to determine the Euler angles (roll, pitch, and yaw) necessary for the spacecraft to safely maneuver around space debris, the manuscript incorporates way-point guidance as a collision avoidance approach. When the simulation compiled with both sinusoidal and Pontryagin trajectories, there were differences within the Euler angle spacecraft tracking that could be attributed to the increased fuel efficiency by over five orders of magnitude and lower computation time by over 15 min for that of Pontryagin's trajectory compared with that of the sinusoidal trajectory. Overall, Pontryagin's method produced an autonomous trajectory that is more optimal by conserving 37.9% more fuel and saving 40.5% more time than the sinusoidal autonomous trajectory.Medical image processing and analysis techniques play a significant role in diagnosing diseases. Thus, during the last decade, several noteworthy improvements in medical diagnostics have been made based on medical image processing techniques. In this article, we reviewed articles published in the most important journals and conferences that used or proposed medical image analysis techniques to diagnose diseases. Starting from four scientific databases, we applied the PRISMA technique to efficiently process and refine articles until we obtained forty research articles published in the last five years (2017-2021) aimed at answering our research questions. The medical image processing and analysis approaches were identified, examined, and discussed, including preprocessing, segmentation, feature extraction, classification, evaluation metrics, and diagnosis techniques. This article also sheds light on machine learning and deep learning approaches. We also focused on the most important medical image processing techniques used in these articles to establish the best methodologies for future approaches, discussing the most efficient ones and proposing in this way a comprehensive reference source of methods of medical image processing and analysis that can be very useful in future medical diagnosis systems.Information technology equipment (ITE) processing sensitive information can have its security compromised by unintentional electromagnetic radiation. Appropriately assessing likelihood of a potential compromise relies on radio frequency (RF) engineering expertise-specifically, requiring knowledge of the associated causal factors and their interrelationships. Several factors that can cause unintentional electromagnetic emanations that can lead to the compromise of ITE have been found in the literature. This paper confirms the list of causal factors reported in previous work, categorizes the factors as belonging to threat, vulnerability, or impact, and develops an interpretive structural model of the vulnerability factors. A participatory modelling approach was used consisting of focus groups of RF engineers. The resulting hierarchical structural model shows the relationships between factors and illustrates their relative significance. The paper concludes that the resulting model can motivate a deeper understanding of the structural relationship of the factors that can be incorporated in the RF engineers' assessment process. Areas of future work are suggested.Secondary infections of early blight during potato crop season are conditioned by aerial inoculum. However, although aerobiological studies have focused on understanding the key factors that influence the spore concentration in the air, less work has been carried out to predict when critical concentrations of conidia occur. Therefore, the goals of this study were to understand the key weather variables that affect the hourly and daily conidia dispersal of Alternaria solani and A. alternata in a potato field, and to use these weather factors in different machine learning (ML) algorithms to predict the daily conidia levels. This study showed that conidia per hour in a day is influenced by the weather conditions that characterize the hour, but not the hour of the day. Specifically, the relative humidity and solar radiation were the most relevant weather parameters influencing the conidia concentration in the air and both in a linear model explained 98% of the variation of this concentration per hour. Moreover, the dew point temperature three days before was the weather variable with the strongest effect on conidia per day. An improved prediction of Alternaria conidia level was achieved via ML algorithms when the conidia of previous days is considered in the analysis. Among the ML algorithms applied, the CART model with an accuracy of 86% were the best to predict daily conidia level.The article presents the use of barometric sensors to precisely determine the altitude of a flying object. The sensors are arranged in a hexahedral spatial arrangement with appropriately spaced air inlets. Thanks to the solution used, the range of measurement uncertainty can be reduced, resulting in a lower probability of error during measurement by improving the accuracy of estimation. HG106 cell line The paper also describes the use of pressure sensors in complex Tracking Vertical Velocity and Height systems, integrating different types of sensors to highlight the importance of this single parameter. The solution can find application in computational systems using different types of data in Kalman filters. The impact of pressure measurements in a geometric system with different spatial orientations of sensors is also presented. In order to compensate for local pressure differences, e.g., in the form of side wind gusts, an additional reference sensor was used, making the developed solution relevant for applications such as industrial ones.Adaptive systems and Augmented Reality are among the most promising technologies in teaching and learning processes, as they can be an effective tool for training engineering students' spatial skills. Prior work has investigated the integration of AR technology in engineering education, and more specifically, in spatial ability training. However, the modeling of user knowledge in order to personalize the training has been neither sufficiently explored nor exploited in this task. There is a lot of space for research in this area. In this work, we introduce a novel personalization of the learning path within an AR spatial ability training application. The aim of the research is the integration of Augmented Reality, specifically in engineering evaluation and fuzzy logic technology. During one academic semester, three engineering undergraduate courses related to the domain of spatial skills were supported by a developed adaptive training system named PARSAT. Using the technology of fuzzy weights in a rule-based decision-making module and the learning theory of the Structure of the Observed Learning Outcomes for the design of the learning material, PARSAT offers adaptive learning activities for the students' cognitive skills. Students' data were gathered at the end of the academic semester, and a thorough analysis was delivered. The findings demonstrated that the proposed training method outperformed the traditional method that lacked adaptability, in terms of domain expertise and learning theories, considerably enhancing student learning outcomes.Gamma radiation has been classified by the International Agency for Research on Cancer (IARC) as a carcinogenic agent with sufficient evidence in humans. Previous studies show that some weather data are cross-correlated with gamma exposure rates; hence, we hypothesize that the gamma exposure rate could be predicted with certain weather data. In this study, we collected various weather and radiation data from an automatic weather system (AWS) and environmental radiation monitoring system (ERMS) during a specific period and trained and tested two time-series learning algorithms-namely, long short-term memory (LSTM) and light gradient boosting machine (LightGBM)-with two preprocessing methods, namely, standardization and normalization. The experimental results illustrate that standardization is superior to normalization for data preprocessing with smaller deviations, and LightGBM outperforms LSTM in terms of prediction accuracy and running time. The prediction capability of LightGBM makes it possible to determine whether the increase in the gamma exposure rate is caused by a change in the weather or an actual gamma ray for environmental radiation monitoring.Federated learning (FL) is a promising collaborative learning approach in edge computing, reducing communication costs and addressing the data privacy concerns of traditional cloud-based training. Owing to this, diverse studies have been conducted to distribute FL into industry. However, there still remain the practical issues of FL to be solved (e.g., handling non-IID data and stragglers) for an actual implementation of FL. To address these issues, in this paper, we propose a cluster-driven adaptive training approach (CATA-Fed) to enhance the performance of FL training in a practical environment. CATA-Fed employs adaptive training during the local model updates to enhance the efficiency of training, reducing the waste of time and resources due to the presence of the stragglers and also provides a straggler mitigating scheme, which can reduce the workload of straggling clients. In addition to this, CATA-Fed clusters the clients considering the data size and selects the training participants within a cluster to reduce the magnitude differences of local gradients collected in the global model update under a statistical heterogeneous condition (e.g., non-IID data). During this client selection process, a proportional fair scheduling is employed for securing the data diversity as well as balancing the load of clients. We conduct extensive experiments using three benchmark datasets (MNIST, Fashion-MNIST, and CIFAR-10), and the results show that CATA-Fed outperforms the previous FL schemes (FedAVG, FedProx, and TiFL) with regard to the training speed and test accuracy under the diverse FL conditions.The distinct properties and affordances of paper provide benefits that enabled paper to maintain an important role in the digital age. This is so much so, that some pen-paper interaction has been imitated in the digital world with touchscreens and stylus pens. Because digital medium also provides several advantages not available to physical paper, there is a clear benefit to merge the two mediums. Despite the plethora of concepts, prototypes and systems to digitise handwritten information on paper, these systems require specially prepared paper, complex setups and software, which can be used solely in combination with paper, and, most importantly, do not support the concurrent precise interaction with both mediums (paper and touchscreen) using one pen only. In this paper, we present the design, fabrication and evaluation of the Hybrid Stylus. The Hybrid Stylus is assembled with the infinity pencil tip (nib) made of graphite and a specially designed shielded tip holder that is attached to an active stylus. The stylus can be used for writing on a physical paper, while it still maintains all the features needed for tablet interaction.
My Website: https://www.selleckchem.com/products/hg106.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team