Notes
Notes - notes.io |
diseases caused by the facultative pathogen P. aeruginosa in chicks with a weak immune status, the hygiene management for drinking water lines and the spray cooling system was changed. These changes resulted in an improvement in water line sanitation, shown by the absence of antibiotic-resistant bacteria and rare detection of P. aeruginosa.Coinfection of Mycoplasma gallisepticum (MG) and Escherichia coli (E. coli) is frequently reported in poultry farms. Baicalin possess various pharmacological properties such as anti-inflammatory, anticancer, and antioxidant, etc. However, the protective effects of baicalin against coinfection of MG and E. coli are still elusive. In this study, baicalin (450 mg/kg) treatment was started on day 13 after infection and continued for 5 d. Histopathological examination, qRT-PCR, ELISA, and molecular docking technique were used to evaluate the effects of baicalin on MG and E. coli coinfection in chicken lung and trachea. The results showed that coinfection caused severe lesions in the lung and tracheal tissues. However, baicalin treatment partially alleviated these lesions in coinfection group. Histopathological examination showed the alveolar spaces and mucosal layer thickening was restored and cilia gradually recovered with baicalin treatment compared in coinfection group and MG-infection group. Meanwhile, IL-17 singling pathway-related genes were significantly reduced (P less then 0.05) in baicalin treatment group in lung, including IL-17C, TRAF6, NF-κB, CXCL1, CXCL2, MMP1, GM-CSF, and MUC5AC. The activities of cytokines and chemokines (CXCL1, CXCL2, MMP1, GMCSF, and MUC5AC) were decreased significantly (P less then 0.05) in baicalin-treated group. The molecular docking of baicalin and NF-κB showed the highest fitness score and interaction. From these results, it has been suggested that baicalin proved effective against coinfection of MG and E. coli in chicken and provided scientific basis for further dose-response and drug-target interaction studies.Antibiotics are one of the most important medical discoveries of the 20th century and will remain an essential tool for treating animal and human diseases in the 21st century. However, misuse of antibiotics imperils the development of animal husbandry and human health all over the world, and it is important to find reliable alternatives to antibiotics to reduce the use of antibiotics. In this study, 22 potential immunopotentiators were screened on the levels of apoptosis and inflammatory factor in duck embryo fibroblast cells (DEFs). The results indicated that interferon (IFN)-β and tumor necrosis factor-α gene transcriptions were significantly upregulated, while interleukin (IL)-2 and Bcl2 mRNA levels were significantly decreased during 22 immunopotentiators treatment. Besides, the expression level of IL-1β mRNA showed significant increase during dihydromyricetin, chlorogenic acid, naringin, imiquimod, thymopentin, β-D-Glucan, astragalus polysacharin, astragalus saponin I, astragalus flavone, curcumin, CpG-Duggested that these 5 immunopotentiators could enhance duck innate immune responses. Taken together, our study not only screened out 5 kinds of duck innate immune immunopotentiators but also initially clarified their underlying mechanism of action, which provide a new insight for the development of efficient approaches to prevent the duck disease from pathogen infections.Poultry colibacillosis has been one of the major causes behind economic losses in the poultry production; however, no effective method for its prevention has been developed so far. Vaccination against colibacillosis is capturing increasing interest. The aim of this study was to demonstrate benefits from using a live, aroA gene-deleted vaccine against colibacillosis in broiler chickens and its potential impact on reduced use of antibiotics, the efficacy of vaccination against infectious bronchitis (IB), and the structure and properties of Escherichia coli population in broilers under commercial farm conditions. In 2 experiments, carried out on 3 farms, broiler chickens of one chicken house from each farm were vaccinated against Escherichia coli (E. coli), whereas birds of other chicken houses of each farm were not vaccinated against E. coli. In experiment 1, which was carried out on 2 farms, for 3 consecutive production cycles, spray vaccination of day-old broilers against E. selleck products coli decreased the number of E. co antimicrobials. Vaccination of broilers against E. coli should be considered in terms of routine immunoprophylaxis.Four GI-1/Massachusetts-type (GI-1/Mass-type) infectious bronchitis virus (IBV) strains were isolated and the complete genomes of these isolates, coupled with the Mass-type live-attenuated vaccine H120 and the Mass-type pathogenic M41 strains, were sequenced in the present study. Our results show that isolates LJL/140820 and I0306/17 may be derived from the Ma5 (another Mass-type live-attenuated vaccine strain) and H120 vaccine strains, respectively. The I1124/16 strain was found to be a M41 variant that likely resulted from nucleotide accumulated mutations in the genome. Consistently, the results of the virus neutralization test showed that isolate I1124/16 was antigenically related but slight different from the M41. Our results from the protection experiments pointed out that chickens immunized with H120 failed to eliminate viral shedding after infection with the isolate I1124/16, which was different from that of M41; this result was consistent to the field observation and further implicated that the variant IBV isolate I1124/16 was antigenic different from the M41 strain. Furthermore, the I1124/16 was found to have comparable but slightly lower pathogenicity with the M41 strain. More studies based on the reverse genetic techniques are needed to elucidate the amino acids in the S1 subunit of spike protein contributing to the altered antigenicity of the isolate I1124/16. In addition, an IBV isolate, LJL/130609, was found to be originated from recombination events between the I1124/16- and Connecticut-like strains. Our results from the virus neutralization test also showed that isolates LJL/130609 and I1124/16 were antigenic closely related. Hence, there are at least 3 different genetic evolution patterns for the circulation of the GI-1/Mass-type IBV field strains in China. The differences of vaccines used, the field conditions and genetic pressures between different flocks, likely account for the emergence, evolution patterns, and characteristics of the Mass-type IBV strains.
My Website: https://www.selleckchem.com/products/bromelain.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team