Notes
Notes - notes.io |
The oriental river prawn Macrobrachium nipponense is a commercially important freshwater shrimp that is widely farmed in China. Aeromonas veronii is a conditional pathogen of farmed shrimp, which has caused huge economic losses to the industry. Therefore, there is urgency to study the host-pathogen interactions between M. nipponense and A. veronii to screen individuals with antimicrobial resistance. In this study, we examined the hepatopancreas of moribund M. nipponense infected with A. veronii and healthy individuals at both the histopathological and transcriptomic levels. We showed that A. veronii infection resulted in tubular necrosis of the M. nipponense hepatopancreas. Such changes likely affect assimilation, storage, and excretion by the hepatopancreas, which could ultimately affect the survival and growth of infected individuals. Among the 61,345 unigenes obtained through RNA sequencing and de novo transcriptome assembly, 232 were differentially expressed between the two groups. KEGG and GO analyses revealed that these differentially expressed genes were implicated in pathways, including PPAR, PI3K/AKT, and AMPK signaling. The results of this study will contribute to an analysis of the immune response of M. nipponense to A. veronii infection at the transcriptomic level. Furthermore, the RNA-seq data generated here provide an important genomic resource for research on M. nipponense in the absence of a reference genome.The reproductive physiology of fish can be changed by the presence of pollutants in the water, which act as endocrine disrupting compounds (EDC). We evaluated the impacts of water contaminants in polluted reservoirs acting as possible EDC on the reproductive physiology of Astyanax fasciatus and Hoplias malabaricus males. We used biomarkers with different levels of biological organization. Hoplias malabaricus adult males were collected in the summer and winter at five different sites in the Tietê River Basin the Ponte Nova reservoir (PN), considered a reference site due to the low anthropogenic influence; the Billings reservoir (BIL) at two different branches; and the Guarapiranga reservoir (GUA) at two different branches. Astyanax fasciatus adult males were collected at PN and BIL. BIL and GUA are subjected to great anthropogenic action. We analyzed gonadal histomorphology, testosterone (T), 11-ketotestosterone (11-KT), estradiol (E2) plasma levels, and gene expression of hepatic vitellogenin (vtgA) and pituitary follicle stimulating hormone (fshβ). In the PN reservoir (reference), the biomarkers analyzed in both species did not differ between the periods analyzed. This is an evidence that the animals keep the same reproductive activity during both seasons. The changes in the plasma concentration of gonadal steroids in both species in polluted reservoirs suggest the presence of EDC compounds in the water and/or adjusts of the physiological setpoint to allow the reproduction in such adverse conditions. The use of vtgA as biomarker suggests the presence of estrogenic compounds, mainly in BIL, but with a more evident response of H. malabaricus. However, even considering physiological changes, both species present testes during the maturation phase that allow the reproduction in an environment with a high degree of pollution.Plant cell wall, the first interface or barrier for toxic ions entering into protoplast, suffers from risk. Nitric oxide (NO) plays an important role in plant growth and responses to abiotic stresses, however, it is not clear whether NO is connected with the response of cell wall to aluminum (Al) tolerance in rice (Oryza sativa L.). In this study, we found that the application of 50 µM Al induces nitrate reductase (NR) activity and endogenous NO production, but not nitric oxide synthase (NOS) activity in two rice genotypes. Pretreatment with 100 µM NO donor (sodium nitroprusside, SNP) reduced Al-induced inhibition of root elongation by 32.3% and 91.7%, and Al accumulation in root-tip by 38.4% and 44.3% in Nipponbare and Zhefu802, respectively. The addition of SNP significantly decreased Al-induced accumulation of pectin, hemicellulose 1 and hemicellulose 2 by 43.1%, 13.1% and 19.2% in Zhefu802 and by 16.9%, 13.4% and 14.0% in Nipponbare, compared with roots treated with Al alone, as well as pectin methylesterase (PME) activity. Therefore, the content of Al absorbed in cell walls was decreased, indicating that the Al-induced structure damage to cell walls was alleviated. Furthermore, the activities of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) treated by Al were all increased by SNP pretreatment, and the lipid peroxidation and damage to plasma membrane of root tips detected with Schiff's reagent and Evans blue reduced. In contrast, the effect was abolished when NO scavenger (cPTIO), and NR inhibitor (NaN3), were added. These results indicated that by regulating the Al-binding capacity to cell walls and lipid peroxidation, the structure of cell walls can be stabilized and that Al toxicity in rice can be alleviated with increased NO.Industrial wastes, for instance, tannery wastes are rich soups of resistant and bioremediation-potent bacteria. In the present work, Chromium (Cr) and tannic acid (TA) resistance bacterial strains were isolated from tannery effluent and identified as Bacillus subtilis (MCC 3275) and Bacillus safensis (MCC 3283) based on its 16S Ribosomal RNA homology. Hexavalent Cr is highly toxic and mutagenic due to its high mobility and reactivity. Whereas, TA is known to inhibit enzyme activity, substrate deprivation, and interaction with membranes and matrix-metal ions. The developed In vitro co-cultured microcosm of B. subtilis and B. safensis was able to remove Cr(VI) up to 95% and TA up to 23%. The bacteria cultures separately were able to degrade Cr(VI) to 88% by B. subtilis and 91% by B. safensis and TA up to 27%. Plackett Burman design (PBD) followed by Response surface methodology (RSM) was applied for the optimization of physio-chemical parameters. The optimized conditions for co-culture development were recorded as K2HPO4 = 0.2 g/L, MgSO4 = 0.2 g/L, NH4Cl = 0.5 g/L, glucose - 0.2 g/L, TA - 5%, Cr = 200 ppm, incubation period of 96 h, agitation speed of 110 rpm, pH = 5.0, temperature= 30 °C and inoculum size = 3%. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) revealed the thorough mechanism of cellular uptake followed by degradation of Cr(VI) and TA. The efficiency of co-culture for other heavy metals was observed as follows Zn 65%, Pb 63%, Cd 65%, and Ni 65%. Bioremediation using bacteria is an economical and environmentally better alternative to conventional remediation methods. BAPTA-AM research buy The isolated bacteria are useful in the effluent treatment of tannery or related industries and in metal recovery in mining processes.
Website: https://www.selleckchem.com/products/bapta-am.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team