Notes
Notes - notes.io |
Healthcare workers (HCW) treating COVID-19 patients are at high risk for infection and may also spread infection through their contact with vulnerable patients. Smell loss has been associated with SARS-CoV-2 infection, but it is unknown whether monitoring for smell loss can be used to identify asymptomatic infection among high risk individuals, like HCW.
We performed a prospective cohort study, tracking 473 HCW across three months to determine if smell loss could predict SARS-CoV-2 infection in this high-risk group. HCW subjects completed a longitudinal, novel behavioral at-home assessment of smell function with household items, as well as detailed symptom surveys that included a parosmia screening questionnaire, and RT-qPCR testing to identify SARS-CoV-2 infection.
SARS-CoV-2 was identified in 17 (3.6%) of 473 HCW. Among the 17 infected HCW, 53% reported smell loss, and were more likely to report smell loss than COVID-negative HCW on both the at-home assessment and the screening questionnaire (P < .01). 67% reported smell loss prior to having a positive SARS-CoV-2 test, and smell loss was reported a median of two days before testing positive. Neurological symptoms were reported more frequently among COVID-positive HCW who reported smell loss (P < .01).
In this prospective study of HCW, self-reported changes in smell using two different measures were predictive of COVID-19 infection. Smell loss frequently preceded a positive test and was associated with neurological symptoms.
In this prospective study of HCW, self-reported changes in smell using two different measures were predictive of COVID-19 infection. Smell loss frequently preceded a positive test and was associated with neurological symptoms.By interrogating metabolic programs in the peripheral blood mononuclear cells (PBMC) of acutely infected COVID-19 patients, we identified novel and distinct immune cell subsets Our studies identified a non-clonal population of T cells expressing high H3K27me3 and voltage-dependent anion channel (VDAC) with mitochondrial dysfunction and increased susceptibility to cell death. Characterized by dysmorphic mitochondria and increased cytoplasmic cytochrome c, apoptosis of these cells was inhibited by preventing VDAC aggregation or blocking caspase activation. Further, we observed a marked increase in Hexokinase II+ polymorphonuclear-myeloid derived suppressor cells (PMN-MDSC). While PMN-MDSC were also found in the PBMC of patients with other viral infections, the Hexokinase II+ PMN-MDSC were found exclusively in the acute COVID-19 patients with moderate or severe disease. Finally, we identified a population of monocytic MDSC (M-MDSC) expressing high carnitine palmitoyltransferase I (CPT1a) and VDAC, which were present in the PBMC of the acute COVID-19 patients, but not recovered COVID-19 patients and whose presence correlated with severity of disease. Overall, these unique populations of immune cells provide insight into the pathogenesis of SARS-CoV-2 infection and provide a means to predict and track disease severity as well as an opportunity to design and evaluate novel therapeutic regimens.Coronavirus disease-2019 (COVID-19) has poorer clinical outcomes in males compared to females, and immune responses underlie these sex-related differences in disease trajectory. As immune responses are in part regulated by metabolites, we examined whether the serum metabolome has sex-specificity for immune responses in COVID-19. In males with COVID- 19, kynurenic acid (KA) and a high KA to kynurenine (K) ratio was positively correlated with age, inflammatory cytokines, and chemokines and was negatively correlated with T cell responses, revealing that KA production is linked to immune responses in males. Males that clinically deteriorated had a higher KAK ratio than those that stabilized. In females with COVID-19, this ratio positively correlated with T cell responses and did not correlate with age or clinical severity. KA is known to inhibit glutamate release, and we observed that serum glutamate is lower in patients that deteriorate from COVID-19 compared to those that stabilize, and correlates with immune responses. Analysis of Genotype-Tissue Expression (GTEx) data revealed that expression of kynurenine aminotransferase, which regulates KA production, correlates most strongly with cytokine levels and aryl hydrocarbon receptor activation in older males. This study reveals that KA has a sex-specific link to immune responses and clinical outcomes, in COVID-19 infection.
Anti-inflammatory therapies such as IL-6 inhibition have been proposed for COVID-19 in a vacuum of evidence-based treatment. However, abrogating the inflammatory response in infectious diseases may impair a desired host response and predispose to secondary infections.
We retrospectively reviewed the medical record of critically ill COVID-19 patients during an 8-week span and compared the prevalence of secondary infection and outcomes in patients who did and did not receive tocilizumab. Additionally, we included representative histopathologic post-mortem findings from several COVID-19 cases that underwent autopsy at our institution.
111 patients were identified, of which 54 had received tocilizumab while 57 had not. Receiving tocilizumab was associated with a higher risk of secondary bacterial (48.1% vs. find more 28.1%, p=0.029 and fungal (5.6% vs. 0%, p=0.112) infections. Consistent with higher number of infections, patients who received tocilizumab had higher mortality (35.2% vs. 19.3%, p=0.020). Seven cases underwent autopsy. In 3 cases who received tocilizumab, there was evidence of pneumonia on pathology. Of the 4 cases that had not been given tocilizumab, 2 showed evidence of aspiration pneumonia and 2 exhibited diffuse alveolar damage.
Experimental therapies are currently being applied to COVID-19 outside of clinical trials. Anti-inflammatory therapies such as anti-IL-6 therapy have the potential to impair viral clearance, predispose to secondary infection, and cause harm. We seek to raise physician awareness of these issues and highlight the need to better understand the immune response in COVID-19.
Experimental therapies are currently being applied to COVID-19 outside of clinical trials. Anti-inflammatory therapies such as anti-IL-6 therapy have the potential to impair viral clearance, predispose to secondary infection, and cause harm. We seek to raise physician awareness of these issues and highlight the need to better understand the immune response in COVID-19.
My Website: https://www.selleckchem.com/products/nor-noha-dihydrochloride.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team