Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The results indicated that microwave oxidation could promote the removal of antibiotics by iron oxide in livestock and poultry breeding wastewater.This paper provides a thorough investigation of the effect of a top low-permeability (TLK) layer on transient saltwater intrusion dynamics prompted by water table fluctuations and sea level rise. Laboratory experiments were conducted on a 2D-sandbox and numerical simulations were performed using the SEAWAT code. Four cases were investigated, including a homogeneous case and three cases, where the top layer thickness (Wtop) was equal to 0.2H, 0.33H and 0.5H, respectively, where H was the aquifer thickness. The experimental and numerical results show that the toe length decreases linearly with increasing the thickness of the TLK layer. The results also suggest that lowering the permeability of the upper part of the aquifer causes faster saltwater removal process. The sensitivity analysis shows that decreasing the top layer permeability causes further reduction of the intrusion length. Nonetheless, the results evidence that this method yields relatively little reduction of the saline water intrusion length if the upper layer thickness is inferior or equal to a fifth of the total aquifer thickness, regardless of the permeability value of the top layer. The field-scale modelling results demonstrate that the performance of the TLK layer weakens noticeably as the hydraulic gradient decreases. The results show that the TLK layer achieved a maximum saltwater wedge reduction of 31% in the case where Wtop = 0.75H, which means that lowering the permeability of three fourths of the aquifer thickness only induced a toe length reduction by nearly a third of its original length. In addition to providing a quantitative analysis of SWI dynamics in bi-layered coastal aquifers, this study questions the performance and practicality of the artificial reduction of the upper aquifer permeability as a countermeasure for seawater intrusion control.Dyed effluents from textile industry are toxic and difficult to treat by conventional methods and biotechnological approaches are generally considered more environmentally friendly. In this work, yeast strains Candida parapsilosis, Yarrowia lipolytica and Candida pseudoglaebosa, isolated from wastewater treatment plants, were tested for their ability to decolorize textile dyes. Both commercial textile synthetic dyes (reactive, disperse, direct, acid and basic) and simulated textile effluents (a total of 32 solutions) were added to a Normal Decolorization Medium along with the yeast (single strains and consortia) and the decolorization was evaluated spectrophotometrically for 48-72 h. Yeasts were able to perform decolorization through adsorption and biodegradation for 28 of the dyes and simulated effluents by more than 50%. Y. lipolytica and C. pseudoglaebosa presented the best results with a true decolorization of reactive dyes, above 90% at 100 mg l-1, and simulated effluents at 5 g l-1 of concentration. Enzyme production was evaluated oxidoreductase was found in the three yeasts, whereas tyrosinase was only found in Y. lipolytica and C. pseudoglaebosa. Y. lipolytica and C. pseudoglaebosa are a potential biotechnological tool for dye degradation in textile wastewaters, especially those containing reactive dyes and a promising tool to integrate in bioremediation solutions, contributing to circular economy and eco sustainability in the water sector since the treated water could possibly be reused for irrigation.In this study, the physicochemical and photocatalytic properties of two kinds of stannate perovskite oxides (MgSnO3 and CaSnO3) were investigated under simulated sunlight, where dimethyl phthalate (DMP) and diethyl phthalate (DEP) were selected as the probe pollutants. The results of photochemical characterization showed that MgSnO3 perovskite exhibited better photocatalytic performance than CaSnO3 perovskite. MgSnO3 perovskite could effectively degrade 75% of DMP and 79% of DEP through pseudo-first-order reaction kinetics, which remained good in pH 3.0 to 9.0. Quenching experiments and electron paramagnetic resonance (EPR) characterization indicated that photogenerated holes (h+), superoxide (O2-), and hydroxyl radicals (OH) worked in the photo-degradation, while O2- played the most important role. Furthermore, intermediates identification and density functional theory (DFT) calculations were used to explore the degradation mechanism. For both DMP and DEP, the reactive oxygen species (ROS, including O2- and OH) were responsible for the hydroxylation of benzene ring and the breaking of the aliphatic chain, while h+ was prone to break the aliphatic chain. This work is expected to provide new insights on the photocatalytic mechanism of stannate perovskites for environmental remediation.To predict CO2 adsorptive capture, as a vital environmental issue, using different zeolites including 5A, 13X, T-Type, SSZ-13, and SAPO-34, different models have been developed by implementing artificial intelligence algorithms. Hybrid adaptive neuro-fuzzy inference system (Hybrid-ANFIS), particle swarm optimization-adaptive neuro-fuzzy inference system (PSO-ANFIS) and the least-squares support vector machine (LSSVM) modeling optimized with the coupled simulated annealing (CSA) optimization have been employed for the models. The developed models, validated by utilizing various graphical and statistical methods exhibited that the Hybrid-ANFIS model estimations for the gas adsorption on 5A, T-Type, SSZ-13, and SAPO-34 zeolites with average absolute relative deviation (AARD) % of 8.21, 1.92, 4.99 and 2.26, and PSO ANFIS model estimations for the gas adsorption on zeolite 13X with an AARD of 4.85% were in good agreement with corresponding experimental data. It could be deduced that the proposed models were more prosperous and efficient in favor of the design and analysis of adsorption processes than previous ones.Global concerns stem from the environmental crisis have compelled researchers to develop selective and sensitive methods for the identification and measurement of emerging pollutants in the environmental matrices. The cationic F-TMU-66+Cl-/polyvinylidene fluoride metal-organic frameworks (MOFs) mixed matrix membrane (F-TMU-66+Cl-/PVDF MMM) was synthesized and used as a versatile adsorbent with multiple binding sites for the simultaneous extraction of twelve anionic perfluorinated compounds (PFCs) from reservoir water samples. The physical and chemical characteristics of the materials, as well as adsorption mechanism were fully surveyed by various instrumental techniques. Important extraction parameters, including amount of MOFs, pH, desorption conditions, and salinity were systematically investigated and optimized. The combination of dispersive membrane solid extraction based on F-TMU-66+Cl-/PVDF MMM with ultra-high performance liquid chromatography-tandem mass spectrometry provided ultra-low limit of detections within the range of 0.03-0.48 ng/L. By virtue of the simplicity and robustness of the extraction procedure, high sensitivity of detection scheme, good stability and selectivity of the F-TMU-66+Cl-/PVDF MMM, the developed method exhibits excellent practicability for ultra-trace analysis of anionic PFCs in water samples.The extracellular and intracellular antibiotic resistance genes (eARGs and iARGs) together constitute the entire resistome in environments. However, the systematic analysis of eARGs and iARGs was still inadequate. Three kinds of environments, i.e., livestock manure, sewage sludge, and lake sediment, were analyzed to reveal the comprehensive characteristics of eARGs and iARGs. Based on the metagenomic data, the diversities, relative abundances, and compositions of eARGs and iARGs were similar. The extracellular and intracellular integrons and insertion sequences (ISs) also did not show any significant differences. However, the degree and significance of the correlation between total relative abundances of integrons/ISs and ARGs were lower outside than inside the cells. Gene cassettes carried by class 1 integron were amplified in manure and sludge samples, and sequencing results showed that the identified ARGs extracellularly and intracellularly were distinct. By analyzing the genetic contexts, most ARGs were found located on chromosomes. Nevertheless, the proportion of ARGs carried by plasmids increased extracellularly. qPCR was employed to quantify the absolute abundances of sul1, sul2, tetO, and tetW, and their extracellular proportions were found highest in sludge samples. These findings together raised the requirements of considering eARGs and iARGs separately in terms of risk evaluation and removal management.Plant root-associated microbiome can be influenced by environmental stress like pollution. However, how organic pollution influences microbial communities in different root-associated niches and plant-microbe interaction remains unclear. We analyzed maize root-associated bacterial communities under stress of di-(2-ethylhexyl) phthalate (DEHP). The results demonstrate that structures and functions of bacterial communities are significantly different among four root-associated niches, and bacterial diversities gradually decline along bulk soil - rhizosphere - rhizoplane - endosphere. DEHP stress significantly reduces bacterial community diversities in both rhizosphere and rhizoplane, and changes their composition, enrichment and depleting process. DEHP stress led to the enrichment of some specific bacterial taxa like phthalate-degrading bacteria (e.g., Rhizobium and Agromyces) and functional genes involving in phthalate degradation (e.g., pht3 and pcaG). Notably, rhizoplane bacterial community is more sensitive to DEHP stress by enriching stress-resistant bacteria and more complex microbial network on rhizoplane than in rhizosphere. DEHP stress also disturbs the colonization and biofilm forming of root-associated bacteria on rhizoplane. Rhizoplane bacterial community is significantly correlated with maize growth while negatively influenced by DEHP stress. DEHP stress negatively influences plant-microbe interaction and inhibits maize growth. Telomerase inhibitor This study provides deep and comprehensive understanding for root-associated bacterial community in response to organic pollution.Water pollution caused by oil leakage or oily sewage has seriously threatened the ecological environment and human health. It remains a tough task for scientists to develop versatile materials to purify different kinds of oily wastewater. In this study, we propose a facile "carbon nanotubes (CNTs) decoration and nanofibrous membrane integration" method to prepare a mechanical robust Janus membrane (JM) composed of a superhydrophilic nanofiber composite layer and a hydrophobic nanofiber composite layer. The asymmetric wettability can be controlled by tuning the thickness of the hydrophobic layer. The nanofiber composite in both two layers possesses a core-shell structure, guaranteeing the excellent flexibility and stretchability of the JM. In addition, the strong interfacial compatibility between the two layers ensures the stability and durability of the JM even after multiple stretching. More importantly, the JM could realize on-demand separation of different kinds of oily wastewater with high separation flux and separation efficiency, including oil/water mixtures with different oil densities, oil-in-water emulsions and water-in-oil emulsions.
Here's my website: https://www.selleckchem.com/products/rhps4-nsc714187.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team