Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
0, (n = 5). The obtained recoveries were 95.6-100.2 % for VAL and 92.0-98.1 % for LOS which showed the applicability of green, water-compatible and bio-compatibility of the proposed method for neat and selective extraction of VAL and LOS from complicated urine samples. Functionalised nanohybrid hydrogel using L-Histidine (HIS) conjugated chitosan, phyto-synthesised zinc oxide nanoparticles (ZNPs) and dialdehyde cellulose (DAC) was formulated as a sustained drug delivery carrier for the polyphenol drugs - Naringenin (NRG), Quercetin (QE) and Curcumin (CUR). A maximum loading efficiency of 90.55 %, 92.84 % and 89.89 %, respectively were optimised for NRG, QE and CUR in the hybrid hydrogel. The maximum drug release was favoured for the optimum drug loading and at pH-5. HIS-chitosan conjugation stabilised the hydrogel and enabled a sustained drug delivery. Drug release kinetics predicted a non-Fickian diffusion-based mechanism along with polymer erosion. Prominent antimicrobial activity against Staphylococcus aureus and Trichophyton rubrum strains were predicted to evolve based on the synergic formulation. Significant biocompatibility towards L929 cells revealed their support for normal cell survival. Anticancer studies towards A431 cells exhibited excellent cytotoxicity with a 15 to 30-fold increase using the hybrid carrier, compared to the free polyphenol drugs. In order to explore a novel type of agricultural water-retaining agent, borax crosslinked fenugreek galactomannan-borax hydrogel (FGB) was synthesized. The hydrogel was characterized by thermogravimetric analysis, FT-IR, XRD, and SEM. The largest swelling index of FGB (115) was higher than that of guar gum hydrogel (70) at pH 9. The water absorption capacity of sandy soil was studied by mixing the hydrogel with soil, then FGB was evaluated as a latent water retention agent. Results showed that the swelling index of sandy soil increased from 16.28% to 35.53% with 0.5 wt.% hydrogel added. https://www.selleckchem.com/products/asunaprevir.html The water retention time increased from 2 to 11.5 days at 20 °C and 60 % humidity. Furthermore, more than ten cycles of water absorption and water loss of soil-FGB were carried out at 50 °C at a relatively stable water retention capacity. This low-cost, environmentally friendly hydrogel has great application potential in agriculture for soil water conservation. Polysaccharide hydrogels have been widely used as wound dressings because of their biocompatibility and ability to provide moist environment for wound healing. However, bacterial infection often delays the healing process. Herein, a novel thermosensitive and pH-sensitive hydroxypropyl chitin/tannic acid/ferric ion (HPCH/TA/Fe) composite hydrogel was fabricated by a simple assembly. The pre-cooled hydrogel precursor solution can be injected onto the irregular wound area and gel rapidly at physiological temperature. The TA not only acted as a crosslinker to enhance mechanical properties of the hydrogel, but also as an antibacterial agent which could be sustainably released in response to the acidic environment. The composite hydrogel showed excellent broad-spectrum antibacterial activity up to 7 days with negligible cytotoxicity. Moreover, the hydrogel can inhibit bacterial infection and accelerate the wound healing process without scars in the mouse experiment. These results indicate the potential application of this composite hydrogel for the infected wound healing. Five different acidic deep eutectic solvents (DESs) composed of choline chloride and organic acids were applied to fabricate chitin nanocrystals (ChNCs). All DESs resulted in high transmittance and stable ChNCs suspensions with very high mass yield ranging from 78 % to 87.5 % under proper reaction conditions. The acidic DESs had a dual role in ChNCs fabrication, i.e. they promoted hydrolysis of chitin and acted as an acylation reagent. Physicochemical characterization of chitin revealed that the removal of amorphous area during DES treatments led to increased crystallinity of ChNCs and a dimension diversity correlated the DES used. The average diameter and length of individual ChNCs ranged from 42 nm to 49 nm and from 257 nm to 670 nm, respectively. The thermal stability of ChNCs was comparable to that of pristine chitin. Thus, acidic DESs showed to be non-toxic and environmentally benign solvents for production of functionalized chitin nanocrystals. Different size and morphology monodispersed chitosan (CS) microspheres loaded with the anticancer drug of 5-fluorouracil (5-Fu) were prepared by the microfluidic method assisted by a crosslinking unit with crosslinkers of tripolyphosphate (TPP) and glutaraldehyde (GTA). The sizes, morphologies, drug loading, encapsulation efficiency, drug release and cytotoxicity of 5-Fu loaded CS microspheres were characterized and determined. Results indicated that the CS microspheres were uniform in size distributions. They possessed excellent encapsulation efficiency and drug loading. The TPP-crosslinked CS microspheres had rough surfaces and exhibited faster drug release, whereas the CS microspheres crosslinked with GTA had smooth surfaces and showed slower drug release. Furthermore, 5-Fu-loaded CS microspheres exhibited sustained drug release which well fitted the first-order kinetics model and were pH-responsive in that the drug cumulative release was greater at acidic environments than at neutral conditions. Finally, 5-Fu loaded CS microspheres provided sufficient cytotoxicity and were satisfactory in the cancer cell inhibition. A facile approach was established to fabricate the pH-responsive surface charge reversal carboxymethyl chitosan-based drug delivery system for pH and reduction dual-responsive triggered DOX release, with a reduction responsive sheddable shell via facile organic solvent-free co-precipitation method. In the proposed DDS, DOX was loaded in the pH responsive core of the poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) fragments, which were bioreducibly conjugated onto the PEGylated carboxymethyl chitosan (PEG-CMCS) backbone as reduction responsive sheddable shielding shell. The proposed PEG-CMCS-SS-PDPA/DOX nanoparticles, with a high drug loading capacity of >36 % with drug-loading only in their cores, showed excellent pH and reduction dual-responsive triggered disintegration and DOX release performance with cumulative release >85 % in the simulated tumor intracellular microenvironment but a low drug leakage less then 8.5 % in the simulated normal physiological medium within 57 h, lower than all the reported CMCS-based DDSs.
Website: https://www.selleckchem.com/products/asunaprevir.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team