NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Relationship Between Understanding along with Innovation-Driven Progress: Moderated by simply Organizational Persona.
Understanding the process of terahertz (THz) wave generation from liquid water is crucial for further developing liquid THz sources. We present a systematic investigation of THz wave generated from laser-irradiated water lines. We show that water line in the diameter range of 0.1-0.2 mm generates the strongest THz wave, and THz frequency red shift is observed when diameter of the water line increases. The pump pulse energy dependence is decoupled from self-focusing effect by compensating the focal point displacement. As the pump pulse energy increases, saturation effect in THz peak electric field is observed, which can be mainly attributed to the intensity clamping effect inside the plasma and have never been reported previously, using water line or water film as the THz source. The proposed mechanism for saturation is supported by an independent measurement of laser pulse spectrum broadening. This work may help to further understand the laser-liquid interaction in THz generation process.The propagation of a Laguerre-Gaussian (LG) beam through a dispersive medium is investigated. The effect of the doughnut-like intensity profile of the probe LG beam on the group velocity is studied. We find an analytical expression for the group velocity out of the optical axis and compare with its projection onto the propagation axis. It is turned out that the group velocity vector is along the optical axis at the waist of the beam and the Rayleigh range. We numerically and analytically investigate the effect of the helical phase front of the coupling LG field on the group velocity of the probe LG field in a four-level double V-type quantum system. read more Our analysis predicts a strange behavior for the group velocity of the probe LG beam inside a normal dispersive medium in the gain region so that it can exceed the speed of light in free space, leads to the gain-assisted superluminal light propagation in normal dispersion. Such an unusual propagation of the LG beam results from the distortion of its helical phase front via the classical interference of the planar and LG fields. The obtained results may find some potential applications in increasing the velocity of the information transmission in optical communications.Inducing a large refractive-index change is the holy grail of reconfigurable photonic structures, a goal that has long been the driving force behind the discovery of new optical material platforms. Recently, the unprecedentedly large refractive-index contrast between the amorphous and crystalline states of Ge-Sb-Te (GST)-based phase-change materials (PCMs) has attracted tremendous attention for reconfigurable integrated nanophotonics. Here, we introduce a microheater platform that employs optically transparent and electrically conductive indium-tin-oxide (ITO) bridges for the fast and reversible electrical switching of the GST phase between crystalline and amorphous states. By the proper assignment of electrical pulses applied to the ITO microheater, we show that our platform allows for the registration of virtually any intermediate crystalline state into the GST film integrated on the top of the designed microheaters. More importantly, we demonstrate the full reversibility of the GST phase between amorphous and crystalline states. To show the feasibility of using this hybrid GST/ITO platform for miniaturized integrated nanophotonic structures, we integrate our designed microheaters into the arms of a Mach-Zehnder interferometer to realize electrically reconfigurable optical phase shifters with orders of magnitude smaller footprints compared to existing integrated photonic architectures. We show that the phase of optical signals can be gradually shifted in multiple intermediate states using a structure that can potentially be smaller than a single wavelength. We believe that our study showcases the possibility of forming a whole new class of miniaturized reconfigurable integrated nanophotonics using beyond-binary reconfiguration of optical functionalities in hybrid PCM-photonic devices.Electrically injected Parity-time (PT)-symmetric double ridge stripe semiconductor lasers lasing at 980 nm range are designed and measured. The spontaneous PT-symmetric breaking point or exceptional point (EP) of the laser is tuned below or above the lasing threshold by means of varying the coupling constant or the mirror loss. The linewidth of the optical spectrum of the PT-symmetric laser is narrowed, compared with that of traditional single ridge (SR) laser and double ridge (DR) laser. Furthermore, the far field pattern of the PT-symmetric laser with EP below the lasing threshold is compared with that of the PT-symmetric laser with EP above the lasing threshold experimentally. It is found that when the laser start to lase, the former is single-lobed while the latter is double-lobed. when the current continues to increase, the former develops into double lobe directly while the latter first develops into single lobe and then double lobe again.Widely used in three-dimensional (3D) modeling, reverse engineering and other fields, point cloud registration aims to find the translation and rotation matrix between two point clouds obtained from different perspectives, and thus correctly match the two point clouds. As the most common point cloud registration method, ICP algorithm, however, requires a good initial value, not too large transformation between the two point clouds, and also not too much occlusion; Otherwise, the iteration would fall into a local minimum. To solve this problem, this paper proposes an ICP registration algorithm based on the local features of point clouds. With this algorithm, a robust and efficient 3D local feature descriptor (density, curvature and normal angle, DCA) is firstly designed by combining the density, curvature, and normal information of the point clouds, then based on the feature description, the correspondence between the point clouds and also the initial registration result are found, and finally, the aforementioned result is used as the initial value of ICP to achieve fine tuning of the registration result. The experimental results on public data sets show that the improved ICP algorithm boosts good registration accuracy and robustness, and a fast running speed as well.
Website: https://www.selleckchem.com/products/liraglutide.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.