NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Destabilization regarding Dark Pockets as well as Megastars by Generalized Proca Job areas.
We study the Hilbert geometry induced by the Siegel disk domain, an open-bounded convex set of complex square matrices of operator norm strictly less than one. This Hilbert geometry yields a generalization of the Klein disk model of hyperbolic geometry, henceforth called the Siegel-Klein disk model to differentiate it from the classical Siegel upper plane and disk domains. In the Siegel-Klein disk, geodesics are by construction always unique and Euclidean straight, allowing one to design efficient geometric algorithms and data structures from computational geometry. For example, we show how to approximate the smallest enclosing ball of a set of complex square matrices in the Siegel disk domains We compare two generalizations of the iterative core-set algorithm of Badoiu and Clarkson (BC) in the Siegel-Poincaré disk and in the Siegel-Klein disk We demonstrate that geometric computing in the Siegel-Klein disk allows one (i) to bypass the time-costly recentering operations to the disk origin required at each iteration of the BC algorithm in the Siegel-Poincaré disk model, and (ii) to approximate fast and numerically the Siegel-Klein distance with guaranteed lower and upper bounds derived from nested Hilbert geometries.We analyze a nonlinear q-voter model with stochastic noise, interpreted in the social context as independence, on a duplex network. The size of the lobby q (i.e., the pressure group) is a crucial parameter that changes the behavior of the system. The q-voter model has been applied on multiplex networks, and it has been shown that the character of the phase transition depends on the number of levels in the multiplex network as well as on the value of q. The primary aim of this study is to examine phase transition character in the case when on each level of the network the lobby size is different, resulting in two parameters q1 and q2. In a system of a duplex clique (i.e., two fully overlapped complete graphs) we find evidence of successive phase transitions when a continuous phase transition is followed by a discontinuous one or two consecutive discontinuous phase transitions appear, depending on the parameter. When analyzing this system, we even encounter mixed-order (or hybrid) phase transition. The observation of successive phase transitions is a new quantity in binary state opinion formation models and we show that our analytical considerations are fully supported by Monte-Carlo simulations.Optimization of structured reactors is not without some difficulties due to highly random economic issues. In this study, an entropic approach to optimization is proposed. The model of entropy production in a structured catalytic reactor is introduced and discussed. Entropy production due to flow friction, heat and mass transfer and chemical reaction is derived and referred to the process yield. The entropic optimization criterion is applied for the case of catalytic combustion of methane. Several variants of catalytic supports are considered including wire gauzes, classic (long-channel) and short-channel monoliths, packed bed and solid foam. The proposed entropic criterion may indicate technically rational solutions of a reactor process that is as close as possible to the equilibrium, taking into account all the process phenomena such as heat and mass transfer, flow friction and chemical reaction.The Tibetan Plateau is considered to be one of the best natural laboratories for seismological research. This study sought to determine the spatial variations of b-values in the western part of the Tibetan Plateau, along with its surrounding areas, and the relation with the region's fault blocks. The study region lies within 27-36.5° N, 78-89° E, and its fracture structure consists of strike-slip faults, as well as normal and thrust faults. A catalog record from 2009-2019 provided 4431 well-centered earthquakes that varied in magnitude from 0.1 to 8.2 M. The record was obtained from China's seismological network, which is capable of recording low magnitudes to analyze b-values in the study area. The key findings of this study are as follows (1) the range of earthquake depth in the region was 0-256 km, with the depth histogram showing a high frequency occurrence of shallow earthquakes in the area; (2) a time histogram showed that the major earthquakes occurred between 2014-2015, including the notable 2015 Gorksed to predict a massive high-magnitude earthquake in the near future.Reducing carbon emissions is an urgent problem around the world while facing the energy and environmental crises. Whatever progress has been made in renewable energy research, efforts made to energy-saving technology is always necessary. The energy consumption from fluid power systems of industrial processes is considerable, especially for pneumatic systems. A novel isothermal compression method was proposed to lower the energy consumption of compressors. A porous medium was introduced to compose an isothermal piston. The porous medium was located beneath a conventional piston, and gradually immerged into the liquid during compression. The compression heat was absorbed by the porous medium, and finally conducted with the liquid at the chamber bottom. The heat transfer can be significantly enhanced due to the large surface area of the porous medium. As the liquid has a large heat capacity, the liquid temperature can maintain constant through circulation outside. This create near-isothermal compression, which minimizes energy loss in the form of heat, which cannot be recovered. There will be mass loss of the air due to dissolution and leakage. Therefore, the dissolution and leakage amount of gas are compensated for in this method. Gas is dissolved into liquid with the pressure increasing, which leads to mass loss of the gas. With a pressure ratio of 41 and a rotational speed of 100 rpm, the isothermal piston decreased the energy consumption by 45% over the conventional reciprocation piston. This gain was accomplished by increasing the heat transfer during the gas compression by increasing the surface area to volume ratio in the compression chamber. Frictional forces between the porous medium and liquid was presented. Work to overcome the frictional forces is negligible (0.21% of the total compression work) under the current operating condition.This article presents several algorithms for controlling water supply system pumps. The aim of having control is the hydraulic optimisation of the network, i.e., ensuring the desired pressure in its recipient nodes, and minimising energy costs of network operation. These two tasks belong to the key issues related to the management and operation of water supply networks, apart from the reduction in water losses caused by network failures and ensuring proper water quality. The presented algorithms have been implemented in an Information and Communications Technology (ICT) system developed at the Systems Research Institute of the Polish Academy of Sciences (IBS PAN) and implemented in the waterworks GPW S.A. in Katowice/Poland.This editorial aims to interest researchers and inspire novel research on the topic of non-equilibrium Thermodynamics and Monte Carlo for Electronic and Electrochemical Processes. We present a brief outline on recent progress and challenges in the study of non-equilibrium dynamics and thermodynamics using numerical Monte Carlo simulations. The aim of this special issue is to collect recent advances and novel techniques of Monte Carlo methods to study non-equilibrium electronic and electrochemical processes at the nanoscale.While considering the deflagration regime, the thermal theory of combustion proposes that the mechanism of heat transfer from the flame exothermic zone to the front neighborhood reactants layer dominates the flame behavior. The introduction of the Fourier law allows a closed solution of the continuity and energy conservation equations to yield the burning velocity. It is, however, clear that this classical solution does not conform to the momentum equation. In the present work, instead of introducing the Fourier law, we suggest the introduction of a simplified version of the Onsager relationship, which accounts for the entropy increase due to the heat transfer process from the front layer to its successive layer. Solving for the burning velocity yields a closed solution that also definitely conforms to the momentum equation. While it is realized that the pressure difference across the flame front in the deflagration regime is very small, we believe that violating the momentum equation is intolerable. Quite a good fitting, similarly to the classic theory predictions, has been obtained between our predictions and some experimentally observed values for the propagation flame deflagration velocity, while here, the momentum equation is strictly conserved.In this paper, we propose, implement, and analyze the structures of two keyed hash functions using the Chaotic Neural Network (CNN). Selleckchem USP25/28 inhibitor AZ1 These structures are based on Sponge construction, and they produce two variants of hash value lengths, i.e., 256 and 512 bits. The first structure is composed of two-layered CNN, while the second one is formed by one-layered CNN and a combination of nonlinear functions. Indeed, the proposed structures employ two strong nonlinear systems, precisely a chaotic system and a neural network system. In addition, the proposed study is a new methodology of combining chaotic neural networks and Sponge construction that is proved secure against known attacks. The performance of the two proposed structures is analyzed in terms of security and speed. For the security measures, the number of hits of the two proposed structures doesn't exceed 2 for 256-bit hash values and does not exceed 3 for 512-bit hash values. In terms of speed, the average number of cycles to hash one data byte (NCpB) is equal to 50.30 for Structure 1, and 21.21 and 24.56 for Structure 2 with 8 and 24 rounds, respectively. In addition, the performance of the two proposed structures is compared with that of the standard hash functions SHA-3, SHA-2, and with other classical chaos-based hash functions in the literature. The results of cryptanalytic analysis and the statistical tests highlight the robustness of the proposed keyed hash functions. It also shows the suitability of the proposed hash functions for the application such as Message Authentication, Data Integrity, Digital Signature, and Authenticated Encryption with Associated Data.A high-pressure pneumatic catapult works under extreme boundaries such as high-pressure and rapid change of pressure and temperature, with the features of nonlinearity and gas-solid convection. In the thermodynamics processes, the pressure is much larger than the critical pressure, and the compressibility factor can deviate from the Zeno line significantly. Therefore, the pneumatic performance and thermo-physical properties need to be described with the real gas hypothesis instead of the ideal gas one. It is found that the analytical results based on the ideal gas model overestimate the performance of the catapult, in comparison to the test data. To obtain a theoretical model with dynamic leakage compensation, leakage tests are carried out, and the relationship among the leakage rate, pressure and stroke is fitted. The compressibility factor library of the equation of state for compressed air is established and evaluated by referring it to the Nelson-Obert generalized compressibility charts. Based on the Peng-Robinson equation, a theoretical model of the high-pressure pneumatic catapult is developed, in which the effects of dynamic leakage and the forced convective heat transfer between the gas and the metal wall are taken into account.
Homepage: https://www.selleckchem.com/products/usp25-28-inhibitor-az1.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.