Notes
![]() ![]() Notes - notes.io |
Cucumber (Cucumis sativus) is one of the most widely cultivated vegetable crops in the world, and its yield is often reduced due to the infection of Botrytis cinerea (B. cinerea), which causes a serious disease. However, few genes involved in the response to B. cinerea have been identified in cucumber. In this study, we identified that CsWRKY10 plays a key role in the cucumber resistance to B. cinerea because that the overexpression of CsWRKY10 significantly increased the susceptibility to B. cinerea in cucumber. After the pathogen infection, the enzyme activities of catalase, superoxide dismutase and peroxidase in transgenic plants were affected, resulting in the decrease in reactive oxygen species (ROS) contents. In addition, the light microscopic images showed that overexpression of CsWRKY10 promoted the spore germination and mycelia elongation of B. cinerea in cucumber. Importantly, after B. cinerea infection, the contents of jasmonic acid (JA) are decreased, and the expression levels of JA- and salicylic acid- related defence genes significantly changed in transgenic plants. In contrast, overexpression of CsWRKY10 enhanced resistance to Corynespora cassiicola in cucumber. Collectively, this study indicated that CsWRKY10 negatively regulates the resistance of cucumber to B. cinerea by reducing the ROS contents and inhibiting the JA-mediated resistance signalling pathway, but strengthens resistance to Corynespora cassiicola.Globally, many saline-alkali soils are rich in NaHCO3 and Na2CO3, which are characterized by a high pH Carbonate stress caused by this kind of soil severely damages plant cells and inhibits plant growth. Biotin and HCO3- participate in the first and rate-limiting reaction of the fatty acid biosynthesis pathway, but whether biotin contributes to plant responses to carbonate stress is unclear. In this study, we revealed that high carbonate and biotin concentrations inhibited Arabidopsis (Arabidopsis thaliana) seedling growth. However, specific concentrations of carbonate and biotin decreased the inhibitory effects of the other compound at the germination and seedling stages. Additionally, a carbonate treatment increased the endogenous biotin content and expression of AtBIO2, which encodes a biotin synthase. Moreover, phenotypic analyses indicated that the overexpression of AtBIO2 in Arabidopsis enhanced the tolerance to carbonate stress, whereas mutations to AtBIO2 had the opposite effect. Furthermore, the carbonate stress-induced accumulation of reactive oxygen species was lower in plants overexpressing AtBIO2 than in the wild-type and bio2 mutants. Accordingly, biotin, which is an essential vitamin for plants, can enhance the resistance to carbonate stress.The yft1 tomato mutant has a yellow-fruited phenotype controlled by a recessive gene of YFT1 allele, which has been shown by map-based cloning to be a homolog of ETHYLENE INSENSITIVE 2 (EIN2). Genetic lesion of YFT1 allele in yft1 is attributed to a 573 bp DNA fragment (IF573) insertion at 1,200 bp downstream of the transcription start site. Transcriptomic analysis revealed that YFT1 lesion resulted in 5,053 differentially expressed genes (DEGs) in yft1 pericarp compared with the M82 wild type cultivar. These were annotated as being involved in ethylene synthesis, chromoplast development, and carotenoid synthesis. The YFT1 lesion caused a reduction in its own transcript levels in yft1 and impaired ethylene emission and signal transduction, delayed chromoplast development and decreased carotenoid accumulation. The molecular mechanism underlying the downregulated YFT1 allele in yft1 was examined at both RNA and DNA levels. The IF573 event appeared to introduce two negative regulatory sequences located at -272 to -173 bp and -172 to -73 bp in the YFT1 allele promoter, causing alterative splicing due to introduction of aberrant splicing sites, and breaking upstream open reading frames (uORF) structure in the 5'-UTR. Those results a new provided insight into molecular regulation of color formation in tomato fruit.Cucumber fruit wart composed of tubercule and spine (trichome on fruit) is not only an important fruit quality trait in cucumber production, but also a well-studied model for plant cell-fate determination. The development of spine is closely related to the initiation and formation of tubercule. Cucurbitacin I mw The spine differentiation regulator CsGL1 has been proved to be epistatic to the tubercule initiation factor CsTu, which is the only connection to be identified between spine and tubercule formations. Our previous studies found that the MIXTA-LIKE transcription factor CsMYB6 can suppress fruit spine initiation, which is independent of CsGL1. How the formation of spine and tubercule is regulated at the molecular level by CsMYB6 remains poorly understood. In this study, we characterized cucumber 35SCsMYB6 transgenic plants, which displayed an obvious reduction in the number and size of fruit spines and tubecules. Molecular analyses showed that CsMYB6 directly interacted with the key spine formation factor CsTTG1 in regulating the formation of fruit spine, and CsTu in regulating the initiation of fruit tubercule, respectively. Based on these evidences, a novel regulatory network is proposed by which CsMYB6/CsTTG1 and CsMYB6/CsTu complexes play an important role in regulating epidermal development, including spine formation and tubercule initiation in cucumber.Anthocyanins are plant-specific pigments, the biosynthesis of which is stimulated by pathogen infection in several plant species. A. thaliana seedlings injected with airborne fungi can accumulate a high content of anthocyanins. The mechanism involved in fungus-induced anthocyanin accumulation in plants has not been fully described. In this study, the fungus Penicillium corylophilum (P. corylophilum), isolated from an Arabidopsis culture chamber, triggered jasmonic acid (JA), salicylic acid (SA), and anthocyanin accumulation in A. thaliana. Inhibitors of JA and SA biosynthesis suppressed the anthocyanin accumulation induced by P. corylophilum. The anthocyanin content was minimal in both the null mutant of JA-receptor coi1 and the null mutant of SA-receptor npr1 under P. corylophilum stimulation. The results indicate that JA and SA signaling mediated fungus-induced anthocyanin biosynthesis in A. thaliana. P. corylophilum led to different levels of anthocyanin generation in null mutants for MYB75, bHLH, EGL3, and GL3 transcription factors and WD40 protein, demonstrating that multiple MYB-bHLH-WD40 transcription factor complexes participated in fungus-induced anthocyanin accumulation in A. thaliana. The present study will help further elucidate the mechanism of plant resistance to pathogen infection.Haskap (Lonicera caerulea subsp. edulis), a shrub with violet-blue fruits, is distributed mainly in Hokkaido, Japan. Miyama-uguisukagura (Lonicera gracilipes), a species related to Haskap, produces red fruits. Interspecific hybridization of Miyama-uguisukagura and Haskap was performed to introduce novel characteristics in the resulting hybrids. The shape and color of the interspecific hybrid fruits differed from those of the parent fruits. A comparison of anthocyanin distribution among these three fruit types by imaging mass spectrometry (IMS) revealed the presence of five different anthocyanins. The average cyanidin 3,5-diglucoside and peonidin 3,5-diglucoside intensities in the interspecific hybrid fruit were higher than those of the parent fruits, whereas the average pelargonidin 3-glucoside, cyanidin 3-glucoside, and peonidin 3-glucoside intensities were the highest in Haskap. All anthocyanins were mainly accumulated in the inner and outer skins of Haskap and interspecific hybrid fruits, and in the skin of Miyama-uguisukagura fruits. The order of signal intensities of all anthocyanins among the three fruits was unchanged in different regions. Additionally, a comparison of IMS and LC/MS data from our previous study confirmed the possibility of comparing multiple fruits in the same plate by IMS. Thus, we elucidated anthocyanin distribution patterns of the interspecific hybrid and parent fruits by IMS.Flavonol derivatives are a group of flavonoids benefiting human health. Their abundant presence in tea is associated with astringent taste. To date, mechanism pertaining to the biosynthesis of flavonols in tea plants remains unknown. In this study, we used bioinformatic analysis mining the tea genome and obtained three cDNAs that were annotated to encode flavonol synthases (FLS). Three cDNAs, namely CsFLSa, b, and c, were heterogenously expressed in E. coli to induce recombinant proteins, which were further used to incubate with three substrates, dihydrokampferol (DHK), dihydroquercetin (DHQ), and dihydromyricetin (DHM). The resulting data showed that three rCsFLSs preferred to catalyze (DHK). Overexpression of each cDNA in tobacco led to the increase of kampferol and the reduction of anthocyanins in flowers. Further metabolic profiling of flavan-3-ols in young tea shoots characterized that kaempferol derivatives were the most abundant, followed by quercetin and then myricetin derivatives. Taken together, these data characterized the key step committed to the biosynthesis of flavonols in tea leaves. Moreover, these data enhance understanding the metabolic accumulation relevance between flavonols and other main flavonoids such as flavan-3-ols in tea leaves.Synthetic auxin herbicides are designed to mimic indole-3-acetic acid (IAA), an integral plant hormone affecting cell growth, development, and tropism. In this review, we explore target site genes in the auxin signaling pathway including SCFTIR1/AFB, Aux/IAA, and ARFs that are confirmed or proposed mechanisms for weed resistance to synthetic auxin herbicides. Resistance to auxin herbicides by metabolism, either by enhanced cytochrome P450 detoxification or by loss of pro-herbicide activation, is a major non-target-site resistance pathway. We speculate about potential fitness costs of resistance due to effects of resistance-conferring mutations, provide insight into the role of polyploidy in synthetic auxin resistance evolution, and address the genetic resources available for weeds. This knowledge will be the key to unlock the long-standing questions as to which components of the auxin signaling pathway are most likely to have a role in resistance evolution. We propose that an ambitious research effort into synthetic auxin herbicide/target site interactions is needed to 1) explain why some synthetic auxin chemical families have activity on certain dicot plant families but not others and 2) fully elucidate target-site cross-resistance patterns among synthetic auxin chemical families to guide best practices for resistance management.Acyl-CoA-binding proteins (ACBP) bind to long-chain acyl-CoA esters and phospholipids, enhancing the activity of different acyltransferases in animals and plants. Nevertheless, the role of these proteins in the synthesis of triacylglycerols (TAGs) remains unclear. Here, we cloned a cDNA encoding HaACBP1, a Class II ACBP from sunflower (Helianthus annuus), one of the world's most important oilseed crop plants. Transcriptome analysis of this gene revealed strong expression in developing seeds from 16 to 30 days after flowering. The recombinant protein (rHaACBP1) was expressed in Escherichia coli and purified to be studied by in vitro isothermal titration calorimetry and for phospholipid binding. Its high affinity for saturated palmitoyl-CoA (160-CoA; KD 0.11 μM) and stearoyl-CoA (180-CoA; KD 0.13 μM) esters suggests that rHaACBP1 could act in acyl-CoA transfer pathways that involve saturated acyl derivatives. Furthermore, rHaACBP1 also binds to both oleoyl-CoA (181-CoA; KD 6.4 μM) and linoleoyl-CoA (182-CoA; KD 21.
Website: https://www.selleckchem.com/products/cucurbitacin-i.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team