Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
We developed a simple method of analyzing the strontium (Sr) and calcium (Ca) content of intact eggshell samples in support of a broader study of how dietary Sr uptake impacts waterfowl eggshell quality. We used wavelength dispersive - x-ray fluorescence spectrometry (WD-XRF) to analyze eggshell pieces ranging in size from ∼6-mm2 fragments to intact half-shells. We verified this approach on a subset of reference shells by subjecting the same region and volume of shell material from which x-ray signals were measured to analysis by inductively-coupled plasma mass spectrometry (ICP-MS). An analysis of the sources of analytical uncertainty yielded total internal error estimates of ±0.3 and 5% relative for Ca and Sr, respectively, on the basis of which the chemistry of intact shell material analyzed by WD-XRF in this study is compared. The total external errors associated with the WD-XRF results of this study in relation to certified reference material (National Institute of Standards and Technology [NIST] 1400 [a bone ash]) are ±9 and 13.5% relative for Ca and Sr, respectfully (95% CL). Our results demonstrate this method is acceptably accurate and precise for many wildlife management applications. WD-XRF analysis is a quick and inexpensive alternative to traditional methods for determining eggshell Sr and Ca that require acid digestion, allowing for generation of larger datasets that might otherwise be cost-prohibitive, while preserving sample material intact.Contamination by per- and polyfluoroalkyl substances (PFASs) is of great concern in global environments. Due to strong regulation of legacy PFASs, emerging PFASs including alternatives and precursors have been introduced to the industrial market. In this study, legacy and emerging PFASs were measured in seawater, sediment, and bivalves collected along the Korean coast to investigate the occurrence, distribution, contamination sources, and bioaccumulation potential of PFASs. Wide concentration ranges of legacy PFASs were detected in multiple environmental samples, indicating widespread contamination. C8-based PFASs (e.g., PFOA and PFOS) were still major contaminants in all of the environmental samples. VE-821 ATM inhibitor Some precursors, such as 82 fluorotelomer sulfonate (82 FTS) and N-ethyl-perfluorooctane sulfonamidoacetic acid (N-EtFOSAA), and perfluoro-2-propoxypropanoic potassium 9-chlorohexadecafluoro-3-oxanonane-1-sulfonate (F-53B), an alternative to PFOS, were detected in sediment or bivalve samples, implying a shift in consumption patterns from legacy to emerging PFASs. The highest concentrations of PFASs in environmental samples were found at the locations near industrial complexes, such as those for the semi-conductor, paper mill, automobile, and metal-plating industry. This result indicates that PFAS contamination is associated with intensive industrial activities in the coastal environment. Matrix-dependent contamination and profiles of PFASs were observed. Seawater was dominated by short-chained PFASs as a prompt reflection of regulation, while the sediment and bivalves were dominated by long-chained PFASs. Carbon-chain length was a major factor governing environmental behavior and bioaccumulation of PFASs. This was the first nation-wide survey on legacy and emerging PFASs in the coastal environment of Korea.Microplastics (MPs) are prevalent global pollutants that are being detected in aquatic ecosystems and drinking water sources around the world. In addition to plastic polymers, MPs contain various chemical substances (known as "additives") that can leach and risk water quality. In this paper, we investigated for the first time the potential release of disinfection byproducts (DBPs) precursors when MPs are exposed to hydrolysis and/or degradation by simulated sunlight. Seventeen MPs with seven different polymer types were collected either as commercial products (e.g. drinking water bottles, shopping bags, recycled plastics, etc.) or pure/virgin polymers. Results showed high release of dissolved organic carbon (DOC) from five MP samples and a significant increase in bromide concentrations from four MPs. DBPs formation potential (DBPFP) experiments with MPs' leachates showed higher concentrations of chlorinated trihalomethanes (THMs), haloacetonitriles (HANs), and total organic halogens (TOX) in three samples, while a significant shift to brominated DBPs was observed in samples containing bromide. Extending the leaching experiments to four consecutive cycles showed that the leaching of DOC and DBPs' precursor significantly decreased after the second leaching cycle. Further analysis revealed that the reactivity of the leached DOC - indicated by THMFP yields - was comparable to those of several raw waters that supply drinking water treatment plants. The leached THMs and TOX from MPs that were exposed to UVA irradiation were in general higher than MPs that were run under dark conditions.Brominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) are increasingly reported at significant levels in various matrices, including consumer goods that are manufactured from plastics containing certain brominated flame retardants. PBDD/Fs are known ligands for the aryl hydrocarbon receptor (AhR) but are not yet considered in the hazard assessment of dioxin mixtures. The aim of the present study was to determine if PBDD/Fs levels present in plastic constituents of toys could pose a threat to children's health. PBDD/Fs, unlike their chlorinated counterparts (PCDD/Fs), have not been officially assigned toxic equivalence factors (TEFs) by the WHO therefore, we determined their relative potency towards AhR activation in both human and rodent cell-based DR CALUX® bioassays. This allowed us to compare GC-HRMS PBDD/F congener levels, converted to total Toxic Equivalents (TEQ) by using the PCDD/F TEFs, to CALUX Bioanalytical Equivalents (BEQ) levels present in contaminated plastic constituents from children's toys. Finally, an estimate was made of the daily ingestion of TEQs from PBDD/Fs-contaminated plastic toys by child mouthing habits. It is observed that the daily ingestion of PBDD/Fs from contaminated plastic toys may significantly contribute to the total dioxin daily intake of young children.
Read More: https://www.selleckchem.com/products/ve-821.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team