Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the cause of Coronavirus Disease 2019 (COVID-19), poses extraordinary threats and complex challenges to global public health. Quantitative measurement of SARS-CoV-2 antibody titer plays an important role in understanding the patient-to-patient variability of immune response, assessing the efficacy of vaccines, and identifying donors for blood transfusion therapy. There is an urgent and ever-increasing demand for serological COVID-19 antibody tests that are highly sensitive, quantitative, rapid, simple, minimally invasive, and inexpensive. selleck products In this work, we developed a single-step, wash-free immunoassay for rapid and highly sensitive quantitative analysis of serological human IgG against SARS-CoV-2 which requires only a single droplet of serum. By simply incubating 4 μL human serum samples with antibody-functionalized gold nanoparticles, a photonic crystal optical biosensor coated with the recombinant spike protein serves as a sensing platform for the formation of sandwich immunocomplex through specific antigen-antibody interactions, upon which the detected IgG molecules can be counted with digital precision. We demonstrated a single-step 15-min assay capable of detecting as low as 100 pg mL-1 human COVID-19 IgG in serum samples. The calculated limit of detecting (LOD) and limit of quantification (LOQ) is 26.7 ± 7.7 and 32.0 ± 8.9 pg mL-1, respectively. This work represents the first utilization of the Activate Capture + Digital Counting (AC + DC)-based immunoassay for rapid and quantitative analysis of serological COVID-19 antibody, demonstrating a route toward point-of-care testing, using a portable detection instrument. On the basis of the sandwich immunoassay principle, the biosensing platform can be extended for the multiplexed detection of antigens, additional IgGs, cytokines, and other protein biomarkers.Fluorescent probes act as a powerful tool to understand the function of intracellular viscosity, which are closely associated with many functional disorders and diseases. Herein we report a boron-dipyrromethene (4,4-difluoro-4-borata-3a,4a-diaza-s-indacene, BODIPY) group based new fluorescent probe (BV-1), which was synthesized facilely by a one-step Knoevenagel-type condensation reaction, to detect viscosity in living cells with high selectivity and sensitivity. DFT calculation demonstrated that the unsaturated moiety at the meso-position of BODIPY suppressed the fluorescence via twisted intramolecular charge transfer (TICT) mechanism in low viscosity media. By restricting the rotation of the molecular rotor, the fluorescence would be enhanced significantly with redshift in emission wavelength in high viscosity conditions. The fluorescence intensity ratio (log (I/I0)) at 570 nm showed a good linearity (R2 = 0.991) with the viscosity (log η) in the range of 2-868 cP. And the limit of detection (LOD) and limit of quantification (LOQ) for viscosity were calculated to be 0.16 cP and 0.54 cP, respectively. BV-1 was demonstrated to be mitochondria localized with low cytotoxicity. Utilizing the new probe BV-1, the changes in mitochondrial viscosity caused by monensin or nystatin have been monitored successfully in real time. This work will provide new efficient ways for the development of viscosity probes, which are expected to be used for the study of intracellular viscosity properties and functions.An ultrasensitive method for the determination of Pb was developed by coupling solution anode glow discharge-optical emission spectrometry (SAGD-OES) with hydride generation (HG). Compared to solution cathode glow discharge, the introduction of analytes yielded via HG from the discharge cathode into the microplasma was demonstrated to be easily performed by SAGD in which the gas jet nozzle served as cathode and further enhanced sensitivity for Pb determination was achieved. The susceptibility of SAGD-OES to the matrix-induced interferences in the analysis of real samples was significantly improved owing to the coupling of HG. After a thorough optimization of the HG-SAGD-OES system parameters, the developed system achieved Pb detection limit of 0.061 ng mL-1, with the corresponding relative standard deviation being less then 2.2% at analyte concentrations of 50 ng mL-1. The potential application of this method was validated by successfully analyzing three certified reference materials (CRMs GBW07311, GBW07312, and GBW07601a (GSH-1)) and human blood samples.This study presents for the first time an in-line solid-phase extraction capillary electrophoresis-mass spectrometry (SPE-CE-MS) method for the enantiodetermination of drugs of abuse in urine samples. The enantioseparation of R,S-3,4-methylenedioxypyrovalerone (R,S-MDPV) was achieved with a 10 mM ammonium acetate BGE (pH 7) that contained 0.5% (m/v) of sulphated-α-CD as chiral selector. At these pH conditions, this CD was negatively charged, which prevented its entrance into the mass spectrometer since it migrates in the opposite direction. To improve sensitivity, an in-line SPE-CE-MS method using high pressure for sample introduction (i.e. 20 min at 3 bars) was developed. Furthermore, the conditioning procedure and the first part of the electrophoretic separation were performed by switching off the nebulizer gas and the ionization source voltage to avoid non-volatile contaminant arrival into the mass spectrometer. The developed methodology was validated by analyzing urine samples, which required a very simple liquid-liquid extraction (LLE) sample pretreatment. Linearity ranged from 30 to 250 ng mL-1, limit of detection (LOD) was 10 ng mL-1, relative standard deviation (RSD) values were below 10.5% in terms of intra-day and inter-day precision and the relative error values were below 9% for peak areas accuracy.Organic-inorganic hybrid monolithic columns, due to the comprehensive advantages, have been applied as promising solid-phase separation matrices for pretreatment of complex samples in biomedical and environmental analyses, however, a tremendous time and efforts are cost to optimize the preparation methods of hybrid monolithic columns with different functional groups for various target analytes. Herein, we proposed a strategy to develop basic hybrid monolithic column materials for flexible and facile post-functionalization. Three kinds of single-functionalized (amine, thiol, and carboxyl) and two kinds of bi-functionalized (amine and thiol, and amine and carboxyl) hybrid monolithic columns were immobilized with gold nanoparticles (GNPs) as intermediary bridge to construct the universal substrates. The GNPs adsorption capacities of the five hybrid monoliths were compared through qualitative characterization and quantitative analysis. Thioglycolic acid (TGA) and an aptamer against human α-thrombin were respectively used for further functionalizing the substrates to select the most suitable hybrid monolith for optional post-functionalization.
Website: https://www.selleckchem.com/products/Enzastaurin.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team