Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The use of selected additives seems to slightly increase potential of hydrogen value and carbon-to-nitrogen ratio, while decreasing electrical conductivity in comparison with control sample. The results obtained also show that the addition of biochar leads to an increase dehydrogenase, phosphatase and arylsulphatase activities and addition of sawdust has a positive effect on beta-D-glucosidase, protease, phosphatase and arylsulphatase activities. The phytotoxicity test shows that the compost made of food waste (control sample) and with addition of biochar is toxic to plants. By contrast, the addition of sawdust shows that the compost was not phytotoxic. In conclusion, the addition of additives does not provide unambiguous results in terms of the quality of the final product in all monitored parameters. Therefore, we can state that food waste was reduced and hygienized, and that the final product does not meet conditions for mature compost. Nanoplastics in the environment lead to the human exposure to these particles. However, the consequences of this exposure are not yet fully understood. Here, the cytotoxicity of polystyrene nanoparticles (PS-NPs) with a uniform size (50 nm) but distinct surface functionalization (pristine polystyrene, PS; carboxy and amino functionalized, PS-COOH and PS-NH2, respectively), and at an exposure dosage of 10, 50 and 100 μg/mL, were assessed in the human hepatocellular carcinoma (HepG2) cell line. Although all PS-NPs could be internalized by the HepG2 cells, according to the fluorescent intensities, more of PS-COOH and PS-NH2 than PS, accumulated in the cells. The cell viability was significantly affected in a positively dose-related manner. Functionalized PS-NPs exhibited greater inhibition of cell viability than PS, and the viability inhibition peaked (46%) at 100 μg/mL of PS-NH2 exposure. Superoxide dismutase (SOD) activity was maximum when HepG2 cells were exposed to 10 μg/mL of PS-COOH (1.8 folds higher than that without PS-COOH exposure). The glutathione (GSH) content was maximum when the cells were treated with 50 μg/mL of PS (3.75 fold increase compared to untreated cells). Although the difference in inhibition of cell viability was not significant between PS-NH2 and PS-COOH exposure, 100 μg/mL of PS-NH2 exposure caused the most severe oxidative stress due to dramatically increased accumulation of malondialdehyde (MDA); however, a decrease in the antioxidants levels as the SOD activity and GSH content were also found. The results demonstrated that the cellular oxidative damage occurred and that the antioxidation enzymes may not be able to maintain the balance between the generation of oxidant species and the antioxidant defense. Consequently, 100 μg/mL of PS-NH2 exposure triggered the destruction of antioxidant structures. This study defines the cytotoxic effects of PS-NPs on HepG2 cells and emphasizes the significance of investigating the cytotoxic outcomes of nanoplastics in humans. Most hydrological simulation and prediction methods assume that the precipitation-runoff relationship was stationary. However, this assumption was found to be questionable during drought years the annual runoff coefficients (the ratio of annual runoff to annual precipitation) during drought years tend to be smaller than those during non-drought years. However, little is known about the spatial distribution of the magnitude of runoff coefficient change (RCchange) during drought years, and which factors dominate the spatial pattern of RCchange over a large spatial scale. To answer these questions, this study investigated the RCchange in 265 catchments in China that cover a broad range of climate and landscape conditions. We identified the significant factors affecting RCchange from ten catchment characteristics and developed a multivariate generalized additive model to simulate the spatial pattern of RCchange across the eastern monsoon region of China. Results indicated that the RCchange showed an increasing trend from north to south of China, with values ranging from -67.1% to -0.3%, with the average being -26.4%. The lower RCchange (corresponding to more significant runoff reduction) in drought years was more likely to occur in catchments with dryer climate and lower elevation. The simulated RCchange by the multivariate generalized additive model demonstrated a good agreement with observed RCchange, and the values of Nash-Sutcliffe efficiency between observed and simulated RCchange were 0.77 for training catchments and 0.72 for testing catchments. Finally, we applied the model to extrapolate RCchange to the entire eastern monsoon region of China. The result would benefit water resources management during drought years. Vultures have evolved adaptive mechanisms to prevent infections associated with their scavenging lifestyle. However, food-borne exposure to antimicrobial pharmaceuticals can promote opportunistic infections with adverse outcomes. Here, we used multivariate and network analyses to increase understanding of the behavior of the yeast communities causing oral mycosis outbreaks recently reported in wild nestling cinereous (Aegypius monachus), griffon (Gyps fulvus) and Egyptian (Neophron percnopterus) vultures (CV, GV and EV, respectively) exposed to antibiotics from livestock farming. Common and unique yeast signatures (of Candida, Debaromyces, Diutina, Meyerozyma, Naganishia, Pichia, Rhodotorula, Trichosporon and Yarrowia species) associated with oral mycoses were identified in the three vulture species. Hierarchical clustering analysis (HCA) and principal component analysis (PCA) highlighted that oral lesions from CV and GV shared similar yeast signatures (of major causative pathogens of opportunistic mycoses, sngs may be useful for development of new initiatives or changes in the conservation of these avian scavengers affected by anthropogenic activities. Biofilm formation is ubiquitous on the corroded inner surface of water distribution pipes. Extracellular polymeric substances (EPS) secreted by biofilm microorganisms are nonnegligible precursors of disinfection byproducts (DBPs). The aim was to study the catalysis of copper corrosion products (CCPs, CuO and Cu2+) on the formation of carbonaceous and nitrogenous DBPs (C-DBPs and N-DBPs) with EPS as a precursor. Results indicate that CCPs had a remarkable enhancement on the formation of DBPs, especially N-DBPs. The enhancement by Cu2+ was mainly via homogeneous catalysis initiating from its complexation with EPS, while that by CuO was primarily through heterogeneous catalysis initiating from the polarization of Cl atom in HOCl/OCl-. The enhancement was more evident as pH increased because an alkaline condition favored the electrostatic interactions of CCPs with EPS and HOCl/OCl-. The presence of Br- weakened the enhancement, which may be attributed to that HOBr/OBr- had a much higher reaction rate than HOCl/OCl- towards the low reactive moieties in EPS. Due to more phenolic or unsaturated/conjugated groups, EPS proteins had a higher catalytic formation of DBPs than EPS polysaccharides. Among the major amino acids in EPS proteins for DBPs formation, tyrosine had the highest enhancement on the formation of trihalomethanes, while histidine had the highest catalytic formation of halogenated acetic acids, acetonitriles and acetamides. The study helps to understand the formation of DBPs by the joint actions of EPS and CCPs in drinking water distribution systems. Soil pollution with heavy metals has become a common problem in agricultural ecosystems and poses a threat to food safety and human health. Intercropping is now considered a promising alternative to address this issue. However, our understandings about the influences of intercropping systems on rhizosphere microbiota composition and their association with plant performance are still limited. In this study, rhizobox microcosm experiments were conducted to investigate the influence of cropping regimes (i.e. monoculture and intercropping) on the rhizosphere bacterial microbiota and their linkages with the phytoextraction of cadmium (Cd) by Zhongyouza 19 (Brassica napus L.), Xikou Huazi (Brassica juncea L.) and Sedum alfredii using 16S rRNA gene sequencing. Cadmium accumulation in shoots of B. napus and B. juncea grown under intercropping were enhanced by 370% and 27.8% respectively, as compared to monoculture. Soil compartmentation as a major determinant explained 57.6% of the rhizosphere bacterial microbiota vaicrobe-metal interactions of intercropping system could facilitate the development of remediation strategy for phytoremediation of contaminated soils and sustainable agricultural production. V.An efficient strategy for enhancing iron efficiency in heterogeneous Fenton reaction via the pyrolysis of ferrocene chemically modified sepiolite (Sep) was proposed in this study. Highly dispersed FeC6 on sepiolite (Fe-Dis@Sep) was synthesized as an efficient photo-Fenton catalyst for the visible light degradation of ofloxacin (OFX). It exhibits an excellent Fenton activity and stability towards OFX degradation. The pseudo-first order reaction rate constant of Fe-Dis@Sep was 5.1-fold higher than that of the supported catalyst with aggregated iron oxides prepared by traditional impregnation method (Fe-Agg@Sep). Based on TEM images and density functional theory (DFT) calculation, the enhanced Fenton activity of Fe-Dis@Sep was attributed to the unique incorporation of FeC6 on Sep via Si-O-C-Fe bond which not only favor the high dispersion of FeC6 with an electron deficiency but also promote Fe(III) to Fe(II) cycle via the formation of surface Fe-H2O2 complex. OH and O2- were identified as active species for OFX degradation in Fe-Dis@Sep-H2O2-Vis system. 98.7% of F and 97.0% of N in OFX was converted into F- and NO3- with a TOC removal efficiency of 89.35%. The possible degradation pathway of OFX was also proposed according to HPLC-MS results. Finally, the Fenton reaction mechanism over Fe-Dis@Sep was discussed. The charge densities (CD) and molecular weights (MW) of the flocculants are closely related to their application performances, but seldom researches focus on the effects of flocculant CD and MW on decolorization efficiencies. Herein, a series of flocculants with various CD and MW levels, named as PBF1-9, were designed and synthesized from papermaking sludge. The physicochemical characteristics of the PBF1-9 were measured by fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS) and particle charge density analyzer (PCD). The efficiencies of PBF1-9 were studied in the reactive blue (RB) dye removals by flocculation under different process conditions. The operation costs of the flocculants were evaluated at their optimal dosages. Also, the pH-independences and ion-tolerances of the aforementioned flocculants were studied in terms of the molecular levels. The experimental results exhibited that the flocculants CD or MW values were relevant to their flocculation behaviors and operation costs. CD values played a dominant role in color removal efficiencies and the costs, whereas MW values were critical to the floc structure. The pH or ion-independences of the flocculants were significantly dependent on the CD and MW values. However, some conclusions, conflicted with prior studies, were observed in this work. https://www.selleckchem.com/products/LBH-589.html For instance, flocculant with the highest CD and MW levels was not the most effective one in enduring pH variation and the coexisting ions. The floc properties, including floc size, resistance and recovery ability, were relatively insensitive to flocculant intrinsic CD and MW levels when the flocculants were used at their optimal dosages. Furthermore, the possible relevance between CD or MW levels and the flocculation mechanisms have been proposed in this work. Exploring the effects of flocculants CD and MW levels could precisely control the flocculant characteristics to achieve satisfactory decontamination efficiencies with low costs.
Homepage: https://www.selleckchem.com/products/LBH-589.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team