Notes
![]() ![]() Notes - notes.io |
Nowadays, red phosphor plays a key role in improving the lighting quality and color rendering index of phosphor-converted white light emitting diodes (w-LEDs). However, the development of thermally stable and highly efficient red phosphor is still a pivotal challenge. Herein, a new strategy to design antithermal-quenching red emission in Eu3+, Mn4+-codoped phosphors is proposed. The photoluminescence intensity of Mg3Y2(1- y )Ge3O12yEu3+, Mn4+ (0 ≤ y ≤ 1) phosphors continuously enhances with rising temperature from 298 to 523 K based on Eu3+ → Mn4+ energy transfer. For Mg3Eu2Ge3O12Mn4+ sample, the integrated intensity at 523 K remarkably reaches 120% of that at 298 K. Interestingly, through codoping Eu3+ and Mn4+ in Mg3Y2Ge3O12, the photoluminescence color is controllably tuned from orangish-red (610 nm) to deep-red (660 nm) light by changing Eu3+ concentration. The fabricated w-LEDs exhibit superior warm white light with low corrected color temperature (CCT = 4848 K) and high color rendering index (R a = 96.2), indicating the promising red component for w-LED applications. Based on the abnormal increase in antistokes peaks of Mn4+ with temperatures, Mg3Eu2Ge3O12Mn4+ phosphor also presents a potential application in optical thermometry sensors. This work initiates a new insight to construct thermally stable and spectra-tunable red phosphors for various optical applications. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.Electronics allowing for visible light to pass through are attractive, where a key challenge is to make the core functional units transparent. Here, it is shown that transparent electronics can be constructed by epitaxial growth of metal-organic frameworks (MOFs) on single-layer graphene (SLG) to give a desirable transparency of 95.7% to 550 nm visible light and an electrical conductivity of 4.0 × 104 S m-1. Through lattice and symmetry match, collective alignment of MOF pores and dense packing of MOFs vertically on SLG are achieved, as directly visualized by electron microscopy. These MOF-on-SLG constructs are capable of room-temperature recognition of gas molecules at the ppb level with a linear range from 10 to 108 ppb, providing real-time gas monitoring function in transparent electronics. The corresponding devices can be fabricated on flexible substrates with large size, 3 × 5 cm, and afford continuous folding for more than 200 times without losing conductivity or transparency. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.Emerging memory devices, that can provide programmable information recording with tunable resistive switching under external stimuli, hold great potential for applications in data storage, logic circuits, and artificial synapses. Realization of multifunctional manipulation within individual memory devices is particularly important in the More-than-Moore era, yet remains a challenge. Here, both rewritable and nonerasable memory are demonstrated in a single stimuli-responsive polymer diode, based on a nanohole-nanowrinkle bi-interfacial structure. Such synergic nanostructure is constructed from interfacing a nanowrinkled bottom graphene electrode and top polymer matrix with nanoholes; and it can be easily prepared by spin coating, which is a low-cost and high-yield production method. Furthermore, the resulting device, with ternary and low-power operation under varied external stimuli, can enable both reversible and irreversible biomimetic pressure recognition memories using a device-to-system framework. This work offers both a general guideline to fabricate multifunctional memory devices via interfacial nanostructure engineering and a smart information storage basis for future artificial intelligence. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.Nanotechnologies are considered to be of growing importance to the vaccine field. Through decoration of immunogens on multivalent nanoparticles, designed nanovaccines can elicit improved humoral immunity. However, significant practical and monetary challenges in large-scale production of nanovaccines have impeded their widespread clinical translation. Here, an alternative approach is illustrated integrating computational protein modeling and adaptive electroporation-mediated synthetic DNA delivery, thus enabling direct in vivo production of nanovaccines. DNA-launched nanoparticles are demonstrated displaying an HIV immunogen spontaneously self-assembled in vivo. DNA-launched nanovaccines induce stronger humoral responses than their monomeric counterparts in both mice and guinea pigs, and uniquely elicit CD8+ effector T-cell immunity as compared to recombinant protein nanovaccines. Improvements in vaccine responses recapitulate when DNA-launched nanovaccines with alternative scaffolds and decorated antigen are designed and evaluated. Finally, evaluation of functional immune responses induced by DLnanovaccines demonstrates that, in comparison to control mice or mice immunized with DNA-encoded hemagglutinin monomer, mice immunized with a DNA-launched hemagglutinin nanoparticle vaccine fully survive a lethal influenza challenge, and have substantially lower viral load, weight loss, and influenza-induced lung pathology. Additional study of these next-generation in vivo-produced nanovaccines may offer advantages for immunization against multiple disease targets. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies. However, the crosslinking process may compromise the responsivity of nanosystems and result in inefficient release of payloads. To address this dilemma, a crosslinking induced reassembly (CIRA) strategy is reported here to simultaneously increase the kinetic and thermodynamic stability and redox-responsivity of polymeric micelles. It is found that the click crosslinking of a model multiblock polyurethane at the micellar interface induces microphase separation between the soft and hard segments. The aggregation of hard domains gathers liable disulfide linkages around the interlayer of micelles, which could facilitate the attack of reducing agents and act as an intelligent on-off switch for high stability and triggered release. As a result, the CIRA approach enables an enhanced tumor targeting, improved biodistribution and excellent therapeutic efficacy in vivo. This work provides a facile and versatile platform for controlled delivery applications. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. see more KGaA, Weinheim.Extracellular matrix (ECM) properties affect multiple cellular processes such as cell survival, proliferation, and protein synthesis. Thus, a polymeric-cell delivery system with the ability to manipulate the extracellular environment can act as a fundamental regulator of cell function. Given the promise of stem cell therapeutics, a method to uniformly enhance stem cell function, in particular trophic factor release, can prove transformative in improving efficacy and increasing feasibility by reducing the total number of cells required. Herein, a click-chemistry powered 3D, single-cell encapsulation method aimed at synthesizing a polymeric coating with the optimal thickness around neural progenitor cells is introduced. Polymer encapsulation of neural stem cells significantly increases the release of neurotrophic factors such as VEGF and CNTF. Cell encapsulation with a soft extracellular polymer upregulates the ADCY8-cAMP pathway, suggesting a mechanism for the increase in paracrine factors. Hence, the described single-cell encapsulation technique can emerge as a translatable, nonviral cell modulation method and has the potential to improve stem cells' therapeutic effect. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.Mineral granules in the mitochondria of bone-forming cells are thought to be the origin of biomineral precursors, which are transported to extracellular matrices to initiate cell-mediated biomineralization. However, no evidence has revealed how mitochondrial granules form. This study indicates that mitochondrial granules are initiated by transporting calcium and phosphorus clusters from the endoplasmic reticulum (ER) to mitochondria based on detailed observations of the continuous process of mouse parietal bone development as well as in vitro biomineralization in bone-forming cells. Nanosized biomineral precursors (≈30 nm in diameter), which originate from mitochondrial granules, initiate intrafibrillar mineralization of collagen as early as embryonic day 14.5. Both in vivo and in vitro studies further reveal that formation of mitochondrial granules is induced by the ER. Elevated levels of intracellular calcium or phosphate ions, which can be induced by treatment with ionomycin and black phosphorus, respectively, accelerate formation of the calcium and phosphorus clusters on ER membranes and ultimately promote biomineralization. These findings provide a novel insight into biomineralization and bone formation. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.Biodegradable Mg-based metals may be promising orthopedic implants for treating challenging bone diseases, attributed to their desirable mechanical and osteopromotive properties. This Review summarizes the current status and future research trends for Mg-based orthopedic implants. First, the properties between Mg-based implants and traditional orthopedic implants are compared on the following aspects in vitro and in vivo degradation mechanisms of Mg-based implants, peri-implant bone responses, the fate of the degradation products, and the cellular and molecular mechanisms underlying the beneficial effects of Mg ions on osteogenesis. Then, the preclinical studies conducted at the low weight bearing sites of animals are introduced. The innovative strategies (for example, via designing Mg-containing hybrid systems) are discussed to address the limitations of Mg-based metals prior to their clinical applications at weight-bearing sites. Finally, the available clinical studies are summarized and the challenges and perspectives of Mg-based orthopedic implants are discussed. Taken together, the progress made on the development of Mg-based implants in basic, translational, and clinical research has laid down a foundation for developing a new era in the treatment of challenging and prevalent bone diseases. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.Human adenoviruses (HAdV) are associated with clinical symptoms such as gastroenteritis, keratoconjunctivitis, pneumonia, hepatitis, and encephalitis. In the absence of protective immunity, as in allogeneic bone marrow transplant patients, HAdV infections can become lethal. Alarmingly, various outbreaks of highly pathogenic, pneumotropic HAdV types have been recently reported, causing severe and lethal respiratory diseases. Effective drugs for treatment of HAdV infections are still lacking. The repurposing of drugs approved for other indications is a valuable alternative for the development of new antiviral therapies and is less risky and costly than de novo development. Arsenic trioxide (ATO) is approved for treatment of acute promyelocytic leukemia. Here, it is shown that ATO is a potent inhibitor of HAdV. ATO treatment blocks virus expression and replication by reducing the number and integrity of promyelocytic leukemia (PML) nuclear bodies, important subnuclear structures for HAdV replication. Modification of HAdV proteins with small ubiquitin-like modifiers (SUMO) is also key to HAdV replication.
Read More: https://www.selleckchem.com/products/wh-4-023.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team