Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The I-DBPs formation was positively correlated with I- concentration, while negatively correlated with MnO2 dose. Protein components displayed a higher formation of N-IDBPs and C-IDBPs than polysaccharide components due to higher nitrogen proportion and more iodination sites. Among 20 protein monomers, aspartic acid was considered as the most important precursor of the four investigated I-DBPs species. The paper is helpful to understand the I-DBPs formation when I- in the bulk water come into contact with Mn deposits attached by biofilm.In this study, the adsorption effect by freshly formed ferric hydroxide (FFFH) for the removal of 47 synthetic dye and antibiotic wastewaters under different pH conditions (i.e., pH = 4, 7, and 10) was investigated. The average total organic carbon (TOC) removal rates (Rexp) of pollutants under acidic, neutral, and alkaline conditions were 27.10 ± 3.21%, 15.16 ± 2.48%, and 9.72 ± 2.81%, respectively. By analyzing the characteristics of FFFH measured by SEM, XRD, FT-IR, TGA and BET, the properties of pollutants, and the values of Rexp, one can conclude that the large specific surface area and rich hydroxyl groups on the surface of FFFH were the reasons for its adsorption capacity for organic pollutants, and the electrostatic adsorption was the main reason for higher removal rate in acidic condition. Subsequently, to better elucidate the intrinsic factors influencing the removal rates at the molecular structure level, three optimal quantitative structure-activity relationship (QSAR) models were established by using multiple linear regression (MLR) analysis. Results of model validations (e.g., regression coefficient, internal and external verifications, and Y-randomization) showed that the established models exhibited excellent stability, reliability, and robustness with the values of R2 = 0.7544, 0.7764, 0.7528, Q2INT = 0.6451, 0.6836, 0.6228, and Q2EXT = 0.5890, 0.6029, 0.7298 under acidic, neutral, and alkaline conditions, respectively. The results of quantum parameter analysis revealed that the adsorption mechanism of FFFH for dyes and antibiotics mainly includes the activity of adsorption site, the behavior of electron transfer and the strength of molecular polarity.A new method is preliminarily validated for the simultaneous analysis of ionic and neutral per- and polyfluoroalkyl substances (PFASs) in both particulate and gaseous phases in air using a nanosampler-20 air sampler (NS20) composed of quartz fiber filters (QFFs), polyurethane foam (PUF) and artificial activated charcoal (GAIAC™). Perfluoroalkane sulfonamido ethanols (FOSEs) mainly remained in PUF, whereas the other neutral analytes were mainly found in GAIAC. Satisfactory recoveries were obtained for FOSEs, fluorotelomer alcohols (FTOHs), fluorotelomer iodides (FTIs), ranging fron 70%-120%, moderate recoveries were achieved for perfluorinated iodine alkanes (FIAs) and diiodofluoroalkanes (FDIAs), ranging from 50%-70%, while poor recoveries were found for perfluoroalkane sulfonamides (FOSAs). Breakthrough experiments revealed that almost all the target analytes were well trapped in GAIAC™, including the very volatile 42 FTOH. learn more Applying to real sampling, our results showed that 62 and 82 FTOH were the most abundant species, with levels detected at 190 pg/m3 and 160 pg/m3. To the best of our knowledge, FDIAs were detected in ambient air for the first time at an average level of 8.3 pg/m3. Overall, the profiles observed from the real air samples reflected current industrial transition from longer chain to shorter chain in PFAS production. Our results revealed that the current method is promising for a more comprehensive understanding on the fates of PFASs in air.The development of efficient, effective, and large-scale treatment methods to address high-risk emerging contaminants (ECs) is a growing challenge in environmental remediation. Herein, a novel parallel coupling strategy of adsorption separation and photodegradation regeneration (parallel ASPR) is proposed; subsequently, an adsorptive photocatalyst (Zn-doped BiOI) is designed to demonstrate how to effectively eliminate fluoroquinolones (FQs) from water with the proposed ASPR scheme. Compared with pure BiOI, the addition of Zn2+ during synthesis has a significant influence on the morphology and structure of the products, resulting in Zn-doped BiOI samples with up to 5 times the specific surface area, 32 times the adsorption capacity, and 20 times the photocurrent intensity. The optimized Zn-doped BiOI sample has an excellent adsorption efficiency for FQs with a removal rate that exceeds 95% after 5 min of adsorption for all 6 tested FQ antibiotics. Then the adsorbed contaminants can be effectively degraded during the later visible-light irradiation process, and the adsorbent can be regenerated synchronously, showing excellent ASPR cycling performances. The mechanisms of rapid adsorption and photocatalysis were explored via material characterizations, adsorption models, density functional theory calculations, and photogenerated species analyses. The results reveal that the enhanced adsorption of Zn-doped BiOI for FQs is due to its high specific surface area, coordination-based chemical adsorption, and surface electrostatic attraction, while its superior visible-light photodegradation performance is mainly ascribed to its strong redox ability, abundant surface oxygen vacancies, and enhanced photogenerated carrier separation efficiency.In this study, the strengthening effect of bio-carrier inoculation in the process of aerobic granulation and its influence on the microbial secretion of extracellular polymeric substances (EPS) has been systematically explored, to further understand and perfect the rapid granulation mechanism. Complete granulation was achieved within 15 days, and the granule morphology realized in a reactor inoculated with the bio-carrier (R1) was better than that in the control group (R2), in which complete granulation was not achieved during the entire operation period. However, AGS gradually disintegrated after the 20th day because of the strong shearing force, the crushed AGS enhanced granulation, however did not ensure stability. The average EPS content in R1 20 mg﹒gVSS-1 higher than that in R2, and the protein (PN) content changes around 41.23-82.56 mg﹒gVSS-1 during the granulation process. This indicates that the bio-carrier stimulates microorganisms to secrete more EPS, and PN may have a greater effect on the aggregation of microorganisms.
My Website: https://www.selleckchem.com/products/Y-27632.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team