NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Reduced the hormone insulin release as well as linked factors inside Eastern side Oriental people.
Our A-DRN also employs a sliding window. The sliding window buffers sequential data points to presume the data distribution roughly, which helps our network to have a robust and consistent performance to a random order of input data. Through the experiments, we empirically demonstrate the effectiveness of A-DRN in both synthetic and real-world benchmark data sets.Continual learning models allow them to learn and adapt to new changes and tasks over time. However, in continual and sequential learning scenarios, in which the models are trained using different data with various distributions, neural networks (NNs) tend to forget the previously learned knowledge. This phenomenon is often referred to as catastrophic forgetting. The catastrophic forgetting is an inevitable problem in continual learning models for dynamic environments. To address this issue, we propose a method, called continual Bayesian learning networks (CBLNs), which enables the networks to allocate additional resources to adapt to new tasks without forgetting the previously learned tasks. Using a Bayesian NN, CBLN maintains a mixture of Gaussian posterior distributions that are associated with different tasks. The proposed method tries to optimize the number of resources that are needed to learn each task and avoids an exponential increase in the number of resources that are involved in learning multiple tasks. The proposed method does not need to access the past training data and can choose suitable weights to classify the data points during the test time automatically based on an uncertainty criterion. We have evaluated the method on the MNIST and UCR time-series data sets. The evaluation results show that the method can address the catastrophic forgetting problem at a promising rate compared to the state-of-the-art models.Time series clustering is usually an essential unsupervised task in cases when category information is not available and has a wide range of applications. However, existing time series clustering methods usually either ignore temporal dynamics of time series or isolate the feature extraction from clustering tasks without considering the interaction between them. In this article, a time series clustering framework named self-supervised time series clustering network (STCN) is proposed to optimize the feature extraction and clustering simultaneously. In the feature extraction module, a recurrent neural network (RNN) conducts a one-step time series prediction that acts as the reconstruction of the input data, capturing the temporal dynamics and maintaining the local structures of the time series. The parameters of the output layer of the RNN are regarded as model-based dynamic features and then fed into a self-supervised clustering module to obtain the predicted labels. To bridge the gap between these two modules, we employ spectral analysis to constrain the similar features to have the same pseudoclass labels and align the predicted labels with pseudolabels as well. STCN is trained by iteratively updating the model parameters and the pseudoclass labels. Experiments conducted on extensive time series data sets show that STCN has state-of-the-art performance, and the visualization analysis also demonstrates the effectiveness of the proposed model.Model-based reinforcement learning (MBRL) has been proposed as a promising alternative solution to tackle the high sampling cost challenge in the canonical RL, by leveraging a system dynamics model to generate synthetic data for policy training purpose. The MBRL framework, nevertheless, is inherently limited by the convoluted process of jointly optimizing control policy, learning system dynamics, and sampling data from two sources controlled by complicated hyperparameters. As such, the training process involves overwhelmingly manual tuning and is prohibitively costly. In this research, we propose a ``reinforcement on reinforcement'' (RoR) architecture to decompose the convoluted tasks into two decoupled layers of RL. The inner layer is the canonical MBRL training process which is formulated as a Markov decision process, called training process environment (TPE). The outer layer serves as an RL agent, called intelligent trainer, to learn an optimal hyperparameter configuration for the inner TPE. This decomposition approach provides much-needed flexibility to implement different trainer designs, referred to ``train the trainer.'' In our research, we propose and optimize two alternative trainer designs 1) an unihead trainer and 2) a multihead trainer. Our proposed RoR framework is evaluated for five tasks in the OpenAI gym. 6-Aminonicotinamide nmr Compared with three other baseline methods, our proposed intelligent trainer methods have a competitive performance in autotuning capability, with up to 56% expected sampling cost saving without knowing the best parameter configurations in advance. The proposed trainer framework can be easily extended to tasks that require costly hyperparameter tuning.Large scale multi-omics data analysis and signature prediction have been a topic of interest in last two decades. While various traditional clustering/correlation-based methods have been proposed, but the overall prediction is not always satisfactory. To solve these challenges, in this article, we propose a new approach by leveraging the Gene Ontology (GO) similarity combined with multi-omics data. Here a new GO similarity measure, ModSchlicker, is proposed and the effectiveness of the proposed measure along with other standardized measures are reviewed while using various graph topology-based Information Content (IC) values of GO-term. The proposed measure is deployed to PPI prediction. Furthermore, by involving GO similarity, we propose a new framework for stronger disease-based gene signature detection from the multi-omics data. For the first objective, we predict interaction from various benchmark PPI datasets of Yeast and Human species. For the latter, the gene expression and methylation profiles are used to identify Differentially Expressed and Methylated (DEM) genes. Thereafter, the GO similarity score along with a statistical method are used to determine potential gene signature. Interestingly, the proposed method produces a better performance (> 0.9 avg. accuracy and >0.95 AUC) than other existing methods during classification of the participating features of the signature.
Homepage: https://www.selleckchem.com/products/6-aminonicotinamide.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.