Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
We conduct extensive experiments on two public depression datasets and the favorable results demonstrate the effectiveness of the proposed algorithm.In this article, a novel integral reinforcement learning (RL)-based nonfragile output feedback tracking control algorithm is proposed for uncertain Markov jump nonlinear systems presented by the Takagi-Sugeno fuzzy model. The problem of nonfragile control is converted into solving the zero-sum games, where the control input and uncertain disturbance input can be regarded as two rival players. Based on the RL architecture, an offline parallel output feedback tracking learning algorithm is first designed to solve fuzzy stochastic coupled algebraic Riccati equations for Markov jump fuzzy systems. Furthermore, to overcome the requirement of a precise system information and transition probability, an online parallel integral RL-based algorithm is designed. Besides, the tracking object is achieved and the stochastically asymptotic stability, and expected H∞ performance for considered systems is ensured via the Lyapunov stability theory and stochastic analysis method. Furthermore, the effectiveness of the proposed control algorithm is verified by a robot arm system.A model's interpretability is essential to many practical applications such as clinical decision support systems. In this paper, a novel interpretable machine learning method is presented, which can model the relationship between input variables and responses in humanly understandable rules. selleckchem The method is built by applying tropical geometry to fuzzy inference systems, wherein variable encoding functions and salient rules can be discovered by supervised learning. Experiments using synthetic datasets were conducted to demonstrate the performance and capacity of the proposed algorithm in classification and rule discovery. Furthermore, we present a pilot application in identifying heart failure patients that are eligible for advanced therapies as proof of principle. From our results on this particular application, the proposed network achieves the highest F1 score. The network is capable of learning rules that can be interpreted and used by clinical providers. In addition, existing fuzzy domain knowledge can be easily transferred into the network and facilitate model training. In our application, with the existing knowledge, the F1 score was improved by over 5%. The characteristics of the proposed network make it promising in applications requiring model reliability and justification.Video Instance Segmentation (VIS) is a new and inherently multi-task problem, which aims to detect, segment, and track each instance in a video sequence. Existing approaches are mainly based on single-frame features or single-scale features of multiple frames, where either temporal information or multi-scale information is ignored. To incorporate both temporal and scale information, we propose a Temporal Pyramid Routing (TPR) strategy to conditionally align and conduct pixel-level aggregation from a feature pyramid pair of two adjacent frames. Specifically, TPR contains two novel components, including Dynamic Aligned Cell Routing (DACR) and Cross Pyramid Routing (CPR), where DACR is designed for aligning and gating pyramid features across temporal dimension, while CPR transfers temporally aggregated features across scale dimension. Moreover, our approach is a light-weight and plug-and-play module and can be easily applied to existing instance segmentation methods. Extensive experiments on three datasets including YouTube-VIS (2019, 2021) and Cityscapes-VPS demonstrate the effectiveness and efficiency of the proposed approach on several state-of-the-art instance and panoptic segmentation methods. Codes will be publicly available at https//github.com/lxtGH/TemporalPyramidRouting.View synthesis methods using implicit continuous shape representations learned from a set of images, such as the Neural Radiance Field (NeRF) method, have gained increasing attention due to their high quality imagery and scalability to high resolution. However, the heavy computation required by its volumetric approach prevents NeRF from being useful in practice; minutes are taken to render a single image of a few megapixels. Now, an image of a scene can be rendered in a level-of-detail manner, so we posit that a complicated region of the scene should be represented by a large neural network while a small neural network is capable of encoding a simple region, enabling a balance between efficiency and quality. Recursive-NeRF is our embodiment of this idea, providing an efficient and adaptive rendering and training approach for NeRF. The core of Recursive-NeRF learns uncertainties for query coordinates, representing the quality of the predicted color and volumetric intensity at each level. Only query coordinates with high uncertainties are forwarded to the next level to a bigger neural network with a more powerful representational capability. The final rendered image is a composition of results from neural networks of all levels. Our evaluation on public datasets and a large-scale scene dataset we collected shows that Recursive-NeRF is more efficient than NeRF while providing state-of-the-art quality. The code will be available at https//github.com/Gword/Recursive-NeRF.Despite the ever-growing popularity of dashboards across a wide range of domains, their authoring still remains a tedious and complex process. Current tools offer considerable support for creating individual visualizations but provide limited support for discovering groups of visualizations that can be collectively useful for composing analytic dashboards. To address this problem, we present MEDLEY, a mixed-initiative interface that assists in dashboard composition by recommending dashboard collections (i.e., a logically grouped set of views and filtering widgets) that map to specific analytical intents. Users can specify dashboard intents (namely, measure analysis, change analysis, category analysis, or distribution analysis) explicitly through an input panel in the interface or implicitly by selecting data attributes and views of interest. The system recommends collections based on these analytic intents, and views and widgets can be selected to compose a variety of dashboards. MEDLEY also provides a lightweight direct manipulation interface to configure interactions between views in a dashboard. Based on a study with 13 participants performing both targeted and open-ended tasks, we discuss how MEDLEY's recommendations guide dashboard composition and facilitate different user workflows. Observations from the study identify potential directions for future work, including combining manual view specification with dashboard recommendations and designing natural language interfaces for dashboard authoring.Flow visualization is essentially a tool to answer domain experts' questions about flow fields using rendered images. Static flow visualization approaches require domain experts to raise their questions to visualization experts, who develop specific techniques to extract and visualize the flow structures of interest. Interactive visualization approaches allow domain experts to ask the system directly through the visual analytic interface, which provides flexibility to support various tasks. However, in practice, the visual analytic interface may require extra learning effort, which often discourages domain experts and limits its usage in real-world scenarios. In this paper, we propose FlowNL, a novel interactive system with a natural language interface. FlowNL allows users to manipulate the flow visualization system using plain English, which greatly reduces the learning effort. We develop a natural language parser to interpret user intention and translate textual input into a declarative language. We design the declarative language as an intermediate layer between the natural language and the programming language specifically for flow visualization. The declarative language provides selection and composition rules to derive relatively complicated flow structures from primitive objects that encode various kinds of information about scalar fields, flow patterns, regions of interest, connectivities, etc. We demonstrate the effectiveness of FlowNL using multiple usage scenarios and an empirical evaluation.Presents the recipient of the 2022 VGTC Visualization Lifetime Achievement Award.Numerical simulation has become omnipresent in the automotive domain, posing new challenges such as high-dimensional parameter spaces and large as well as incomplete and multi-faceted data. In this design study, we show how interactive visual exploration and analysis of high-dimensional, spectral data from noise simulation can facilitate design improvements in the context of conflicting criteria. Here, we focus on structure-borne noise, i.e., noise from vibrating mechanical parts. Detecting problematic noise sources early in the design and production process is essential for reducing a product's development costs and its time to market. In a close collaboration of visualization and automotive engineering, we designed a new, interactive approach to quickly identify and analyze critical noise sources, also contributing to an improved understanding of the analyzed system. Several carefully designed, interactive linked views enable the exploration of noises, vibrations, and harshness at multiple levels of detail, both in the frequency and spatial domain. This enables swift and smooth changes of perspective; selections in the frequency domain are immediately reflected in the spatial domain, and vice versa. Noise sources are quickly identified and shown in the context of their neighborhood, both in the frequency and spatial domain. We propose a novel drill-down view, especially tailored to noise data analysis. Split boxplots and synchronized 3D geometry views support comparison tasks. With this solution, engineers iterate over design optimizations much faster, while maintaining a good overview at each iteration. We evaluated the new approach in the automotive industry, studying noise simulation data for an internal combustion engine.Locating neck-like features, or locally narrow parts, of a surface is crucial in various applications such as segmentation, shape analysis, path planning, and robotics. Topological methods are often utilized to find the set of shortest loops around handles and tunnels. However, there are abundant neck-like features on genus-0 shapes without any handles. While 3D geometry-aware topological approaches exist to find neck loops, their construction can be cumbersome and may even lead to geometrically wide loops. Thus we propose a "topology-aware geometric approach" to compute the tightest loops around neck features on surfaces, including genus-0 surfaces. Our algorithm starts with a volumetric representation of an input surface and then calculates the distance function of mesh points to the boundary surface as a Morse function. All neck features induce critical points of this Morse function where the Hessian matrix has precisely one positive eigenvalue, i.e., type-2 saddles. As we focus on geometric neck features, we bypass a topological construction such as the Morse-Smale complex or a lower-star filtration. Instead, we directly create a cutting plane through each neck feature. Each resulting loop can then be tightened to form a closed geodesic representation of the neck feature. Moreover, we offer criteria to measure the significance of a neck feature through the evolution of critical points when smoothing the distance function. Furthermore, we speed up the detection process through mesh simplification without compromising the quality of the output loops.
Website: https://www.selleckchem.com/products/kb-0742-dihydrochloride.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team