Notes
![]() ![]() Notes - notes.io |
OBJECTIVE. The purpose of this study was to compare diagnostic accuracy of TNM stage for whole-body MRI and coregistered PET/MRI using 1.5-T and 3-T MRI systems and PET/CT in patients with non-small cell lung cancer (NSCLC). SUBJECTS AND METHODS. A total of 104 patients with pathologically diagnosed NSCLC underwent whole-body MRI at 1.5 T and 3T and integrated PET/CT, as well as a combination of surgical, pathologic, or follow-up examinations. Whole-body MR images obtained by the five sequences were combined with the PET part of the PET/CT using proprietary software for the PET/MRI studies. Selleck Levofloxacin The TNM stage obtained with all methods was visually assessed. Kappa statistics were used to determine agreement between TNM stage assessment and final diagnoses, and the McNemar test was used to compare diagnostic accuracy of all methods. RESULTS. Findings of TNM stage on whole-body MRI using 3-T (κ, 0.87; p less then 0.0001) and 1.5-T (κ, 0.83; p less then 0.0001) systems and for coregistered PET/MRI using a 3-T system (PET/MRI3T; κ, 0.85; p less then 0.0001) were rated as significant and almost perfect, and findings for coregistered PET/MRI using a 1.5-T system (PET/MRI1.5T; κ, 0.80; p less then 0.0001) and PET/CT (κ, 0.73; p less then 0.0001) were rated significant and substantial. Diagnostic accuracy of whole-body MRI using the 3-T system was 88.5% (92/104; p = 0.0002, and using the 1.5-T system it was 84.6% (88/104; p = 0.004); results for PET/MRI3T and PET/MRI1.5T were 86.5% (90/104; p = 0.001) and 81.7% (85/104; p = 0.03), respectively, which were both significantly better than accuracy of results for PET/CT at 76.0% (79/104). Moreover, diagnostic accuracy of whole-body MRI using a 3-T system was significantly higher than that of PET/MRI using a 1.5-T system (p = 0.02). CONCLUSION. Whole-body MRI and coregistered PET/MRI using 3-T and 1.5-T systems are as accurate or more accurate than PET/CT, whereas differences between 3-T and 1.5-T MRI systems are not considered significant.OBJECTIVE. The purpose of this study was to prospectively evaluate, using software support, the feasibility and the quantitative and qualitative image quality parameters of a tube voltage-tailored contrast medium (CM) application protocol for patient-specific injection during coronary CT angiography (CCTA). SUBJECTS AND METHODS. In the Voltage-Based Contrast Media Adaptation in Coronary Computed Tomography Angiography (VOLCANIC-CTA) study, a single-center trial, 120 patients referred for CCTA were prospectively assigned to a tube voltage-tailored CM injection protocol. Automated tube voltage levels were selected in 10-kV intervals and ranged from 70 to 130 kV, and the iodine delivery rate (IDR) was adapted to the tube voltage level using dedicated software. The administered CM volume (370 mg I/mL) ranged from 33 mL at 70 kV (IDR, 0.7 g I/s) to 65 mL at 130 kV (IDR, 1.7 g I/s). Attenuation was measured in the aorta and coronary arteries to calculate quantitative signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), and 5-point scales were used to evaluate overall image quality. Radiation metrics were also assessed and compared among the protocols. RESULTS. The mean age of the study patients was 62.5 ± 11.9 (SD) years. Image quality was rated as diagnostic in all patients. Contrast attenuation peaked at 70 kV (p less then 0.001), whereas SNR and CNR parameters showed no significant differences between tube voltage levels (p ≥ 0.085). Additionally, no significant differences in subjective image quality parameters were found among the different protocols (p ≥ 0.139). The lowest radiation dose values were observed in the group assigned to the 70-kV protocol, which had a median radiation effective dose of 2.0 mSv (p less then 0.001). CONCLUSION. The proposed tube voltage-tailored injection protocol allows individualized scanning of patients undergoing CCTA and significantly reduces CM and radiation dose while maintaining a high diagnostic image quality.OBJECTIVE. Repeated imaging is an unnecessary source of patient radiation exposure, a detriment to patient satisfaction, and a waste of time and money. Although analysis of rates of repeated and rejected images is mandated in mammography and recommended in radiography, the available data on these rates for CT are limited. MATERIALS AND METHODS. In this retrospective study, an automated repeat-reject rate analysis algorithm was used to quantify repeat rates from 61,102 patient examinations obtained between 2015 and 2018. The algorithm used DICOM metadata to identify repeat acquisitions. We quantified rates for one academic site and one rural site. The method allows scanner-, technologist-, protocol-, and indication-specific rates to be determined. Positive predictive values and sensitivity were estimated for correctly identifying and classifying repeat acquisitions. Repeat rates were compared between sites to identify areas for targeted technologist training. RESULTS. Of 61,102 examinations, 4676 instances of repeat scanning contributed excess radiation dose to patients. Estimated helical overlap repeat rates were 1.4% (95% CI, 1.2-1.6%) for the rural site and 1.1% (95% CI, 1.0-1.2%) for the academic site. Significant differences in rates of repeat imaging required because of bolus tracking (11.6% vs 4.3%; p less then 0.001) and helical extension (3.3% vs 1.8%; p less then 0.001) were observed between sites. Positive predictive values ranged from 91% to 99% depending on the reason for repeat imaging and site location. Sensitivity of the algorithm was 92% (95% CI, 87-96%). Rates tended to be highest for emergent imaging procedures and exceeded 9% for certain protocols. CONCLUSION. Our multiinstitutional automated quantification of repeat rates for CT provided a useful metric for unnecessary radiation exposure and identification of technologists in need of training.OBJECTIVE. The purpose of this study was to evaluate findings at serial MRI after endoscopic removal of a button battery from the esophagus in a series of pediatric patients. MATERIALS AND METHODS. Serial MRI examinations after removal of a button battery from the esophagus were reviewed retrospectively for the presence of mediastinal edema; imaging characteristics of the aorta and arteries; imaging characteristics of the trachea; and imaging characteristics of the esophageal wall at the level of injury. RESULTS. A total of 48 MRI examinations were performed on 19 patients, 89% (17/19) in the first 48 hours after battery removal. Serial MRI was performed for 84% (16/19) of patients. Initial MRI showed extensive mediastinal edema in all 17 patients who underwent MRI in the first 48 hours. Edema directly abutted major arteries in all 17 patients and abutted the airway in all 10 patients with proximal esophageal injury. Arterial vascular changes were seen in 30% (3/10) of patients with proximal esophageal injury and 57% (4/7) of patients with mid or distalesophageal injury.
Read More: https://www.selleckchem.com/products/levofloxacin-hydrochloride.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team