Notes
![]() ![]() Notes - notes.io |
The in vitro fecal fermentation characteristics and microbiota responses to A- and B-type polymorphic starches as model (whole) foods enriched with resistant starch was investigated. Marked difference in fermentation rate as well as microbial genera was observed during fermentation, the degradation pattern as well as structural evolution during fermentation was almost similar. The final butyrate concentrations of both HAMS and PS (ca. 38 mM) were significantly higher than that of WMS (23 mM) and NMS (33 mM), which was associated with the increase of the relative abundance of Roseburia, Blautia, and Lachnospiraceae. A-type polymorphic starches, on the other hand had remarkably faster fermentation rate and promoted Megamonas. X-ray diffraction and size-exclusion chromatography of residual starch during the fermentation course demonstrated the "side-by-side" fermentation pattern. Based on the structural changes observed, we conclude that in vitro fecal fermentation of starch granules predominantly controlled by the surface features rather than the molecular and supra-molecular structure.To develop a biomaterial to lift the lesion and promote wound healing in endoscopic submucosal dissection (ESD), we used lactobionic acid (LA) to improve the water solubility of chitosan (CS) and prepared a new three-phase hydrogel system with lactobionic acid-modified chitosan/chitosan/β-glycerophosphate (CSLA/CS/GP). The results indicated that the hydrogel retains temperature-sensitive properties, and CSLA obviously improved the low-temperature fluidity of the hydrogel precursor solution, enabling injection of the hydrogel by endoscopic needle. this website The mechanical strength and bio-adhesion of the hydrogels were also improved by the addition of CSLA and the hydrogels could be maintained in acidic environment for a few days and exhibit greater protection of cells. The CSLA/CS/GP hydrogels show good cytocompatibility. The heights of cushions elevated by CSLA/CS/GP hydrogels remained ∼ 60 % 2 h post-injection in porcine stomach models. Given the unique characteristics of these materials, the CSLA/CS/GP thermo-sensitive hydrogel is a promising intraoperative biomaterial in ESD.Herein, dual-bioresponsive of Rhein (RH) in promoting colonic mucous damage repair and controlling inflammatory reactions were combined by the dual-targeting (intestinal epithelial cells and macrophages) oral nano delivery strategy for effective therapy of ulcerative colitis (UC). Briefly, two carbohydrates, calcium pectinate (CP) and hyaluronic acid (HA) were used to modify lactoferrin (LF) nanoparticles (NPs) to encapsulate RH (CP/HA/RH-NPs). CP layer make CP/HA/RH-NPs more stable and protect against the destructive effects of the gastrointestinal environment and then release HA/RH-NPs to colon lesion site. Cellular uptake evaluation confirmed that NPs could specifically target and enhance the uptake rate via LF and HA ligands. in vivo experiments revealed that CP/HA/RH-NPs significantly alleviated inflammation by inhibiting the TLR4/MyD88/NF-κB signaling pathway and accelerated colonic healing. Importantly, with the help of CP, this study was the first to attempt for LF as a targeting nanomaterial in UC treatment and offers a promising food-based nanodrug in anti-UC.For the first time, conductive starch/poly(ionic liquid) hydrogels from a polymerizable deep eutectic solvent (DES) by frontal polymerization (FP) were reported. The solubility and dispersibility for starch granules in the polymerizable DES was investigated. The effects of starch content on FP behaviors, mechanical properties and electrical conductivity of composite hydrogels were studied. Results showed that starch could be partially dissolved and dispersed in the DES. Comparing with the pure poly(ionic liquid) hydrogel from DES (the tensile strength was 41 K Pa), the tensile strength of composite hydrogel could increased by 3.07 times and reached 126 K Pa. When the fixed strain was 80 %, its compressive strength could increase by 6 times and reaches 16.8 MPa. The main reason was that there was a strong interfacial interaction between starch and the polymer hydrogel network. The starch/poly(ionic liquid) composite hydrogels also had good electrical conductivity. Absorption of water could increase the conductivity of the composite hydrogel significantly.This research evaluates the elicitors activity and structure characterization of four Chrysanthemum indicum polysaccharides (CIPs) which were isolated from C. indicum, obtained CIP1, CIP2, CIP3, CIP4. Results demonstrated that there was a distinct difference in inducibility and CIP3 was significantly stronger than other CIPs through bioactivity-tests. Taking CIP3 with total carbohydrate content 91.93 % as a representative, its structure was elucidated as a relative molecular weight of 8. 741 × 103 g/mol and mainly composed of xylose, galacturonic acid, galactose and glucuronic acid. Through GC, IR and NMR, CIP3 was determined to possess a backbone comprised of T-α-d-GalpA, 1,4-α-d-GlcpA, 1,2-α-d-Xylp, 1,3-α-l-Rhap, 1,2,4-α-l-Rhap and sidechains comprised of 1,3-β-d-Galp, 1,6-α-d-Galp, T-α-Glcp, 1,3-β-d-Glcp, 1,4-α-d-Glcp, 1,3,4-α-d-Manp, T-α-l-Fucp. Further results indicated that CIP3 with active sidechains could significantly increase the expression of defense genes in Atractylodes macrocephala Koidz (AM). It is believed that the sidechains of CIP3 were necessary to its elicitor activity via bioactivity tests.For skin contact medical devices, realizing a strong contact with skin is essential to precisely detect human biological information and enable human-machine interaction. In this study, we aimed to fabricate and characterize an inclusion complex film (ICF) for skin adhesion using α-cyclodextrin (α-CD) and nonanyl group-modified PVA (C9-PVA) under wet conditions. Based on the water insolubility of C9-PVA and the inclusion ability of α-CD for alkyl groups, α-CD/C9-PVA ICF was prepared. Among the prepared ICFs, α-CD/2.5C9-PVA (w/w = 0.5) ICF showed the highest bonding strength and T-peeling strength to porcine skin. Furthermore, α-CD/2.5C9-PVA (w/w = 0.5) ICF had better water vapor transmission rate than that of commercial tapes. In addition, the ion permeability test revealed that α-CD/2.5C9-PVA (w/w = 0.5) ICF exhibited excellent Na and Cl ion permeability. These results demonstrated that the multi-functional α-CD/2.5C9-PVA (w/w = 0.5) ICF can be a promising adhesive for skin contact medical devices.
Website: https://www.selleckchem.com/products/p7c3.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team