Notes
Notes - notes.io |
Proprioception is an important component of controlled movement. The threshold to detection of passive movement (TDPM) is a commonly used method for quantifying the proprioceptive submodality of kinesthesia in research settings. The TDPM paradigm has been found to be valid and reliable; however, the equipment and methods used for TDPM vary between studies. In particular, the research laboratory apparatuses for producing passive movement of an extremity are often custom designed by individual laboratories or inaccessible due to high cost. There is a need for a standardized, valid, and reliable method for measuring TDPM using readily available equipment. The purpose of this protocol is to provide a standardized method for measurement of TDPM at the elbow that is economical, easy to administer, and that produces quantitative results for measurement purposes in research-based settings. This method was tested on 20 healthy adults without neurological impairment, and eight adults with chronic stroke. The results obtained suggest this method is a reliable way to quantify elbow TDPM in healthy adults, and provides initial support for validity. Researchers seeking a balance between equipment affordability and measurement precision are most likely to find this protocol of benefit.In medicine or industry, the analysis of high-dimensional data sets is increasingly required. However, available technical solutions are often complex to use. Therefore, new approaches like immersive analytics are welcome. Immersive analytics promise to experience high-dimensional data sets in a convenient manner for various user groups and data sets. Technically, virtual-reality devices are used to enable immersive analytics. In Industry 4.0, for example, scenarios like the identification of outliers or anomalies in high-dimensional data sets are pursued goals of immersive analytics. In this context, two important questions should be addressed for any developed technical solution on immersive analytics First, is the technical solutions being helpful or not? Second, is the bodily experience of the technical solution positive or negative? The first question aims at the general feasibility of a technical solution, while the second one aims at the wearing comfort. Extant studies and protocols, which systematically address these questions are still rare. In this work, a study protocol is presented, which mainly investigates the usability for immersive analytics in Industry 4.0 scenarios. Specifically, the protocol is based on four pillars. First, it categorizes users based on previous experiences. Second, tasks are presented, which can be used to evaluate the feasibility of the technical solution. Third, measures are presented, which quantify the learning effect of a user. Fourth, a questionnaire evaluates the stress level when performing tasks. Based on these pillars, a technical setting was implemented that uses mixed reality smartglasses to apply the study protocol. The results of the conducted study show the applicability of the protocol on the one hand and the feasibility of immersive analytics in Industry 4.0 scenarios on the other. The presented protocol includes a discussion of discovered limitations.Ex vivo culture of the adult mammalian cardiomyocytes (CMs) presents the most relevant experimental system for the in vitro study of cardiac biology. Adult mammalian CMs are terminally differentiated cells with minimal proliferative capacity. The post-mitotic state of adult CMs not only restricts cardiomyocyte cell cycle progression but also limits the efficient culture of CMs. Moreover, the long-term culture of adult CMs is necessary for many studies, such as CM proliferation and analysis of gene expression. Selleck M344 The mouse and the rat are the two most preferred laboratory animals to be used for cardiomyocyte isolation. While the long-term culture of rat CMs is possible, adult mouse CMs are susceptible to death and cannot be cultured more than five days under normal conditions. Therefore, there is a critical need to optimize the cell isolation and long-term culture protocol for adult murine CMs. With this modified protocol, it is possible to successfully isolate and culture both adult mouse and rat CMs for more than 20 days. Moreover, the siRNA transfection efficiency of isolated CM is significantly increased compared to previous reports. For adult mouse CM isolation, the Langendorff perfusion method is utilized with an optimal enzyme solution and sufficient time for complete extracellular matrix dissociation. In order to obtain pure ventricular CMs, both atria were dissected and discarded before proceeding with the disassociation and plating. Cells were dispersed on a laminin coated plate, which allowed for efficient and rapid attachment. CMs were allowed to settle for 4-6 h before siRNA transfection. Culture media was refreshed every 24 h for 20 days, and subsequently, CMs were fixed and stained for cardiac-specific markers such as Troponin and markers of cell cycle such as KI67.4D microscopy is an invaluable tool for unraveling the embryonic developmental process in different animals. Over the last decades, Caenorhabditis elegans has emerged as one of the best models for studying development. From an optical point of view, its size and transparent body make this nematode an ideal specimen for DIC (Differential Interference Contrast or Nomarski) microscopy. This article illustrates a protocol for growing C. elegans nematodes, preparing and mounting their embryos, performing 4D microscopy and cell lineage tracing. The method is based on multifocal time-lapse records of Nomarski images and analysis with specific software. This technique reveals embryonic developmental dynamics at the cellular level. Any embryonic defect in mutants, such as problems in spindle orientation, cell migration, apoptosis or cell fate specification, can be efficiently detected and scored. Virtually every single cell of the embryo can be followed up to the moment the embryo begins to move. Tracing the complete cell lineage of a C. elegans embryo by 4D DIC microscopy is laborious, but the use of specific software greatly facilitates this task. In addition, this technique is easy to implement in the lab. 4D microscopy is a versatile tool and opens the possibility of performing an unparalleled analysis of embryonic development.
Here's my website: https://www.selleckchem.com/products/m344.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team