Notes
Notes - notes.io |
Hence, more syngas with higher heating values can be obtained with further catalytic pyrolysis gasification, steam gasification, or higher temperature pyrolysis.3D digital models of the upper limb anatomy represent the starting point for the design process of bespoke devices, such as orthoses and prostheses, which can be modeled on the actual patient's anatomy by using CAD (Computer Aided Design) tools. The ongoing research on optical scanning methodologies has allowed the development of technologies that allow the surface reconstruction of the upper limb anatomy through procedures characterized by minimum discomfort for the patient. However, the 3D optical scanning of upper limbs is a complex task that requires solving problematic aspects, such as the difficulty of keeping the hand in a stable position and the presence of artefacts due to involuntary movements. Scientific literature, indeed, investigated different approaches in this regard by either integrating commercial devices, to create customized sensor architectures, or by developing innovative 3D acquisition techniques. The present work is aimed at presenting an overview of the state of the art of optical technologies and sensor architectures for the surface acquisition of upper limb anatomies. The review analyzes the working principles at the basis of existing devices and proposes a categorization of the approaches based on handling, pre/post-processing effort, and potentialities in real-time scanning. An in-depth analysis of strengths and weaknesses of the approaches proposed by the research community is also provided to give valuable support in selecting the most appropriate solution for the specific application to be addressed.The objective of the present study was to evaluate whether gender determination in two amphibian species (Kaloula pulchra and Xenopus laevis) can be reliably carried out by means of magnetic resonance imaging (benchtop magnetic resonance imaging; BT-MRI) or ultrasound (high-resolution ultrasound; HR-US) techniques. Two species of healthy, sexually mature anurans have been used in the present study. Eight Kaloula (blind study) and six Xenopus were used as controls. Magnetic resonance imaging experiments were carried out on a low-field (1 Tesla) benchtop-MRI (BT-MRI) system. HR-US examination was performed with high-resolution equipment. Low-field BT-MRI images provided a clear and quantifiable identification of all the sexual organs present in both genders and species. The HR-US also allowed the identification of testes and ovaries in both species. Results indicate that BT-MRI allowed a very precise sex identification in both anuran species, although its use is limited by the cost of the equipment and the need for anesthesia. HR-US allowed an accurate identification of ovaries of both species whereas a precise identification of testes is limited by the ultrasonographer experience. The main advantages of this technique are the possibility of performing it without anesthesia and the higher availability of equipment in veterinary and zoo institutions.Child malnutrition remains a global concern with implications not only for children's health and cognitive function, but also for countries' economic growth. Recent reports suggest that global nutrition targets will not be met by 2025. Large gaps are evident between and within countries. One of the largest disparities in child malnutrition within counties is between urban and rural children. Large disparities also exist in urban areas that have higher rates of child malnutrition in the urban poor areas or slums. This paper examines stunting and anemia related to an urban poverty measure in children under age 5 in 28 low and middle-income countries with Demographic and Health Survey data. We used the United Nations Human Settlements Programme (UN-HABITAT) definition to define urban poor areas as a proxy for slums. The results show that in several countries, children had a higher risk of stunting and anemia in urban poor areas compared to children in urban non-poor areas. In some countries, this risk was similar to the risk between the rural and urban non-poor. Tests of heterogeneity showed that these results were not homogeneous across countries. These results help to identify areas of greater disadvantage and the required interventions for stunting and anemia.
Carbapenemase-producing Enterobacteriaceae (CPE) are an emerging threat in healthcare settings worldwide.
We evaluated the presence of carbapenemase genes in CPE in a tertiary care university hospital in Tokyo, Japan.
Carbapenem-resistant clinical isolates were collected in 2018 at Teikyo University Hospital (Tokyo, Japan). Bacterial species were identified using MALDI-TOF MS. Carbapenemase production was evaluated using a carbapenemase inactivation method. The presence of carbapenemase genes was confirmed by multiplex PCR and DNA sequencing.
Four CPE isolates were identified two
complex strains and
and
strains. Three of the isolates (
complex and
) were IMP-1-type producers, including IMP-10 in their produced metallo-β-lactamase, and are epidemic in East Japan. The IMP-10-producing
complex strain also produced CTX-M ESBL. The other CPE isolate (
) is a VIM-1 producer. VIM-1-producing
is epidemic in Europe, especially in Greece. Accordingly, the VIM-1 producer was isolated from a p need for active surveillance.Free radicals, generally composed of reactive oxygen species (ROS) and reactive nitrogen species (RNS), are generated in the body by various endogenous and exogenous systems. The overproduction of free radicals is known to cause several chronic diseases including cancer. However, increased production of free radicals by chemotherapeutic drugs is also associated with apoptosis in cancer cells, indicating the dual nature of free radicals. Among various natural compounds, curcumin manifests as an antioxidant in normal cells that helps in the prevention of carcinogenesis. It also acts as a prooxidant in cancer cells and is associated with inducing apoptosis. Curcumin quenches free radicals, induces antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase), and upregulates antioxidative protein markers-Nrf2 and HO-1 that lead to the suppression of cellular oxidative stress. OSS_128167 mw In cancer cells, curcumin aggressively increases ROS that results in DNA damage and subsequently cancer cell death. It also sensitizes drug-resistant cancer cells and increases the anticancer effects of chemotherapeutic drugs. Thus, curcumin shows beneficial effects in prevention, treatment and chemosensitization of cancer cells. In this review, we will discuss the dual role of free radicals as well as the chemopreventive and chemotherapeutic effects of curcumin and its analogues against cancer.Curcumin (CUR) is an attractive polyphenol for its anti-inflammatory, antibacterial, antioxidant, and anticancer properties. Poor solubility in water and sensitivity against sunlight are the most challenging characteristics in the development of CUR for clinical use. The aim is to develop oral lipid-based bioactive self-nanoemulsifying drug delivery systems (Bio-SNEDDSs) for curcumin as a candidate for cancer therapy. Bio-SNEDDSs containing black seed oil, medium-chain mono- and diglycerides, and surfactants were prepared as CUR delivery vehicles. The morphology, droplet size, physical stability, encapsulation efficiency, risk of precipitation, lipid digestion, antioxidant activity, and antimicrobial activity were evaluated for the representative formulations. Finally, an MTT assay was performed on MCF-7 cells to determine the cytotoxic effect of the different formulations. The results showed lower droplet size (28.53 nm) and higher drug-loading (CUR 20 mg, thymoquinone 1.2 mg) for the representative Bio-SNEDDS (black seed oil/Imwitor 988/KolliphorEL (35/15/50) % w/w), along with a transparent appearance upon aqueous dilution. The dynamic dispersion and in-vitro lipolysis data proved that the Bio-SNEDDS was able to keep the CUR in a solubilized form in the gastrointestinal tract. From the antioxidant and antimicrobial studies, it was suggested that the Bio-SNEDDS had the highest activity for disease control. The MTT assay showed that the representative Bio-SNEDDS treatment led to a reduction of cell viability of MCF-7 cells compared to pure CUR and conventional SNEDDSs. A Bio-SNEDDS with elevated entrapment efficiency, antioxidant/antimicrobial activities, and an antiproliferative effect could be the best anticancer drug candidate for potential oral delivery.The aim of this work was to systematically obtain quantitative imaging parameters with static and dynamic contrast-enhanced (CE) X-ray imaging techniques and to evaluate their correlation with histological biomarkers of angiogenesis in a subcutaneous C6 glioma model. Enhancement (E), iodine concentration (CI), and relative blood volume (rBV) were quantified from single- and dual-energy (SE and DE, respectively) micro-computed tomography (micro-CT) images, while rBV and volume transfer constant (Ktrans) were quantified from dynamic contrast-enhanced (DCE) planar images. CI and rBV allowed a better discernment of tumor regions from muscle than E in SE and DE images, while no significant differences were found for rBV and Ktrans in DCE images. An agreement was found in rBV for muscle quantified with the different imaging protocols, and in CI and E quantified with SE and DE protocols. Significant strong correlations (Pearson r > 0.7, p less then 0.05) were found between a set of imaging parameters in SE images and histological biomarkers E and CI in tumor periphery were associated with microvessel density (MVD) and necrosis, E and CI in the complete tumor with MVD, and rBV in the tumor periphery with MVD. In conclusion, quantitative imaging parameters obtained in SE micro-CT images could be used to characterize angiogenesis and necrosis in the subcutaneous C6 glioma model.Nowadays, an increasing number of heterocyclic-based drugs found application in medicinal chemistry and, in particular, as anticancer agents. In this context, oxadiazoles-five-membered aromatic rings-emerged for their interesting biological properties. Modification of oxadiazole scaffolds represents a valid strategy to increase their anticancer activity, especially on 1,2,4 and 1,3,4 regioisomers. In the last years, an increasing number of oxadiazole derivatives, with remarkable cytotoxicity for several tumor lines, were identified. Structural modifications, that ensure higher cytotoxicity towards malignant cells, represent a solid starting point in the development of novel oxadiazole-based drugs. To increase the specificity of this strategy, outstanding oxadiazole scaffolds have been designed to selectively interact with biological targets, including enzymes, globular proteins, and nucleic acids, showing more promising antitumor effects. In the present work, we aim to provide a comprehensive overview of the anticancer activity of these heterocycles, describing their effect on different targets and highlighting how their structural versatility has been exploited to modulate their biological properties.Helicobacter pylori infection is a leading cause of gastric cancer, which is the second-most common cancer-related death in the world. The chronic inflammatory environment in the gastric mucosal epithelia during H. pylori infection stimulates intracellular signaling pathways, namely inflammatory signals, which may lead to the promotion and progression of cancer cells. We herein report two important signal transduction pathways, the LPS-TLR4 and CagA-MET pathways. Upon H. pylori stimulation, lipopolysaccharide (LPS) binds to toll-like receptor 4 (TLR4) mainly on macrophages and gastric epithelial cells. This induces an inflammatory response in the gastric epithelia to upregulate transcription factors, such as NF-κB, AP-1, and IRFs, all of which contribute to the initiation and progression of gastric cancer cells. Compared with other bacterial LPSs, H. pylori LPS has a unique function of inhibiting the mononuclear cell (MNC)-based production of IL-12 and IFN-γ. While this mechanism reduces the degree of inflammatory reaction of immune cells, it also promotes the survival of gastric cancer cells.
Here's my website: https://www.selleckchem.com/products/oss-128167.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team