Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Sulfidated copper-iron bimetallic particles (S-Fe-Cu) were prepared by sulfidation of copper-iron bimetallic particles (Fe-Cu) obtained by the replacement reaction in the liquid phase. The influencing factors of S-Fe-Cu in removing Cr(Ⅵ) in water were determined. BET, SEM-EDX, and XPS were used to analyze the superficial structure and mineralogy of S-Fe-Cu. Combined with batch experiments, the mechanisms of Cr removal were analyzed. The results showed that FeSx was successfully loaded on the surface of S-Fe-Cu, and the optimum S/Fe molar ratio and Cu/Fe mass ratio in theory were 0.056 and 0.025, respectively. Compared with Fe-Cu, the specific surface area of S-Fe-Cu increased by 2.1 times, and the Cr removal efficiency increased by 6.1 times under a pH of 5. A high Cr removal efficiency was maintained under alkaline conditions. Meanwhile, chloride ions could penetrate the passivation layer of iron-based material, which was beneficial to the direct oxidation of Fe0 to produce Fe(Ⅱ) and advance the performance of S-Fe-Cu for Cr removal. The XPS results showed that the removal mechanism of Cr(Ⅵ) in water included adsorption, reduction, and coprecipitation.Multiphase catalytic ozone oxidation technology has received wide attention for its effectiveness in removing organic pollutants from water. However, the existence of a rate-limiting step in the metal oxide-catalyzed ozonation process based on single-site redox, which inhibits the activity, greatly limits the practical application of the multiphase catalytic ozonation technology. To solve this bottleneck problem, lattice doping of metal oxide γ-Al2O3 substrates with transition metal species Fe and Ti was used to prepare novel dual reaction center catalysts (FT-A-1 DRCs). Characterization of their morphological structures and chemical compositions was conducted by XRD, TEM, XPS, and other techniques, and it was demonstrated that the lattice substitution of Fe and Ti for Al resulted in the formation of surface-poor electron-rich microregions (electron-rich Fe microcenters and electron-deficient Ti microcenters). The FT-A-1 DRCs were used to catalyze the odor oxidation process and exhibited excellent activity and stability for the removal of a range of non-degradable organic pollutants, such as ibuprofen. The interfacial reaction mechanism was revealed using EPR and electrochemical techniques. It was found that in the catalytic odor oxidation process, O3/H2O was directionally reduced at the electron-rich microcenters to produce·OH, whereas the contaminants could be oxidized at the electron-deficient microcenters as electron donors to continuously supply electrons to the reaction system. This reaction process utilizes the pollutant's own energy to achieve two-way degradation of the pollutant (·OH attack and direct electron donor), thereby overcoming the rate-limiting step in the metal-oxide-catalyzed ozone oxidation process.Although the activation method of permonosulfate has been gradually developed, its practical application is severely restricted by the high cost and difficult recovery of the catalyst, thereby resulting in secondary pollution. In this study, the application potential of self-decolorization of dyes and degradation of other pollutants through persulfate(PS) activation was examined by building a self-decolorization system. The results showed that the dyes could activate PS under visible light irradiation, which could realize not only the self-decolorization of dyes, but also the degradation of other pollutants. find more The degradation rates of rhodamine B and bisphenol A could reach 80% and 90%, respectively. This process included both free radical reaction pathways and nonradical reaction pathways. The active oxidants produced in the system included superoxide radicals, sulfate radicals, hydroxyl radicals, and singlet oxygen. The self-decolorization efficiency of dyes was related to the type of dyes, initial concentration of the dyes, dosage of PS, and initial pH of the solution. Meanwhile, the initial concentrations of the dyes and other pollutants had a great influence on the degradation of other pollutants. This study provides a new idea for economic and environmental protection in the PS activation method, and has broad application prospects in the treatment of printing and dyeing wastewater.The visible light-driven photocatalyst Ag3PO4/g-C3N4 was synthesized by a simple in-situ precipitation method. The synthesized samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectroscopy. Compared with that of single Ag3PO4 and g-C3N4, the Ag3PO4/g-C3N4 composite had a higher catalytic efficiency for levofloxacin. According to the energy band analysis and free radical capture experiment, the mechanism of the Z-type heterostructure of the Ag3PO4/g-C3N4 composite was proposed.Antibiotic pollution in the environment has become a hot topic. The amphoteric surfactant octadecyl dimethyl betaine (BS-18) was adopted to modify bentonite to investigate the effects and mechanisms of the composite adsorption of different types of antibiotics. Under the different modification ratios, temperatures, pH values, and ionic strength conditions, the adsorption of tetracycline (TC) and norfloxacin (NOR) by bentonite was studied under single and compound conditions, and the adsorption mechanism was analyzed and discussed in combination with the surface properties of amphoterically modified bentonite. The results showed that compared with those of CK, the CEC and specific surface area of the soil samples modified by BS-18 decreased, whereas the total carbon and total nitrogen contents increased. The adsorption order of BS-18 amphoterically modified bentonite to TC was CK > 100BS > 25BS > 50BS, which was in accordance with the Langmuir model; the adsorption order of NOR was 25BS > 50BS > CK > 100BS, wh TC+NOR mixture was formed to promote the adsorption of soil samples.In view of the significant differences in phosphorus removal processes by different steel slags, electric furnace slag was taken as the research object to discuss the effects of environmental factors, including the adsorption time and adsorption temperature, on phosphorus removal and to verify the phosphorus removal performances of steel slag for phosphate, pyrophosphate, and actual water bodies. With the help of spectral techniques including scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDS), X-ray fluorescence spectroscopy(XRF), and an X-ray diffractometer(XRD), the phosphorus removal mechanisms of steel slag were explored. Moreover, the phosphorus removal abilities of different absorptive media of steel slag, ceramsite, and zeolite were compared, and the safety performances of phosphorus removal by steel slag were evaluated. The results showed that the adsorption time significantly affected the phosphorus removal efficiency of steel slag. The phosphorus removal efficiencies of phosphate solutions with a concentration range of 1-20 mg·L-1 using steel slag could reach over 97% when the adsorption time was 30 min.
Read More: https://www.selleckchem.com/products/ho-3867.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team