Notes
Notes - notes.io |
The results clearly showed high biocompatibility of PHBV as both types of cells showed similar proliferation. These results indicated that PHBV scaffolds are suitable for the development of multifunctional substrates facilitating the growth of different types of tissue regardless of the 3D and 2D designed structures for regeneration purposes. Phenolic compounds such as catechol are present in a wide variety of foods and beverages; they are of great importance due to their antioxidant properties. Their consumption protects against the development of certain diseases such as cancer and cardiovascular diseases. A MIP chitosan (CS) film has been electrodeposited on a boron doped diamond (BDD) electrode, by chronoamperommetry in the presence of catechol, followed by elution with 0.1 M KCl. The morphology of the MIP and non-MIP (NIP) film has been studied by AFM. The electrochemical response of the sensor analyzed by cyclic voltammetry (CV) indicates that the sensor shows excellent reproducibility (RSD = 4.1%) and repeatability (RSD = 7.0%) for catechol detection in the range of 0 to 80 μM, with a detection limit of 6.9 × 10-7 M and high selectivity to catechol recognition versus different phenolic compounds. The results obtained in a red wine show that it can detect catechol in a complex matrix. Inflammatory diseases increase has recently sparked the research interest for drugs diagnostic tools development. At therapeutic doses, acetylsalicylic acid (ASA or aspirin) is widely used for these diseases' treatment. ASA overdoses can however give rise to adverse side effects including ulcers, gastric damage. Hence, development of simple, portable and sensitive methods for ASA detection is desirable. This paper reports aspirin analysis in urine, saliva and pharmaceutical tablet using an electrochemical sensor and a voltammetric electronic tongue (VE-Tongue). GCN2iB order The electrochemical sensor was fabricated by self-assembling chitosan capped with gold nanoparticles (Cs + AuNPs) on a screen-printed carbon electrode (SPCE). It exhibits a logarithmic-linear relationship between its response and the ASA concentration in the range between 1 pg/mL and 1 μg/mL. A low detection limit (0.03 pg/mL), good selectivity against phenol and benzoic acid interference, and successful practical application were demonstrated. Qualitative analysis was performed using the VE-Tongue based unmodified metal electrodes combined with two chemometric approaches to classify urine samples spiked with different aspirin concentrations. Partial least squares (PLS) method provided prediction models obtained from the data of both devices with a regression correlation coefficient R2 = 0.99. Correspondingly, the SPCE/(Cs + AuNPs) electrochemical sensor and VE-Tongue could be viable tools for biological analysis of drugs. There is a significant industrial demand for minimizing the size of droplets for various technical applications. Herein, conformal polymer coatings were used to decrease the orifice dimensions of aperture plates to almost any desired dimension. The generated droplet size revealed a relevant impact on the final dried particle size in a spray-drying process. Likewise, the smaller droplets generated resulted in an improved lung deposition following inhalation. Overall, the current results help increase the understanding on how to manipulate the size distribution of droplets produced by actuated aperture plates, especially in the sub-10 μm range. V.Photosensitive polymeric three-dimensional microstructured film (PTMF) is a new type of patterned polymeric films functionalized with an array of sealed hollow 3D containers. The microstructured system with enclosed chemicals provides a tool for the even distribution of biologically active substances on a given surface that can be deposited on medical implants or used as a cells substrate. In this work, we proposed a way for photothermally activating and releasing encapsulated substances at picogram amounts from the PTMF surface in different environments using laser radiation delivered with a multimode optical fiber. The photosensitive PTMFs were prepared by the layer-by-layer (LbL) assembly from alternatively charged polyelectrolytes followed by covering with a layer of hydrophobic polylactic acid (PLA) and a layer of gold nanoparticles (AuNPs). Moreover, the typical photothermal cargo release amounts were determined on the surface of the PTMF for a range of laser powers delivered to films placed in the air, deionized (DI) water, and 1% agarose gel. The agarose gel was used as a soft tissue model for developing a technique for the laser activation of PTMFs deep in tissues using optical waveguides. The number of PTMF chambers activated by a near-infrared (NIR) laser beam was evaluated as the function of optical parameters. Extracellular matrix (ECM) contains a wide array of complex proteins, growth factors and cytokines that regulate cell behavior and tissue development. ECM harvested from non-homologous ECM sources still provide a structural support and biochemical cues to cells for effective tissue remodeling. The aim of this study is to evaluate the effect of non-tissue specific decellularized ECM from porcine dermis loaded with biphasic calcium phosphate powder (BCP) in bone regeneration. Thermosensitive ECM hydrogels with BCP powder exhibited a porous morphology with a suitable injectability and increased mechanical stability. In-vitro studies using MC3T3-E1 pre osteoblast cells showed that the injectable ECM hydrogels were biocompatible and supported the osteogenic differentiation. The bone regeneration capacity of the injectable ECM hydrogels was evaluated in-vivo by implanting in rat femoral head for 4 and 8 weeks. Micro-CT and histological staining results indicated that the injectable ECM hydrogels loaded with BCP powder showed higher and improved bone formation compared with the unfilled defect. Injectable ECM loaded with BCP powder is a good potential biomaterial for non-load bearing bone regeneration application. Interest in nanostructures such as titanate nanotubes (TNT) has grown notably in recent years due to their biocompatibility and economic viability, making them promising for application in the biomedical field. Quercetin (Qc) has shown great potential as a chemopreventive agent and has been widely studied for the treatment of diseases such as bladder cancer. Motivated by the possibilities of developing a new hybrid nanostructure with potential in biomedical applications, this study aimed to investigate the incorporation of quercetin in sodium (NaTNT) and zinc (ZnTNT) titanate nanotubes, and characterize the nanostructures formed. Qc release testing was also performed and cytotoxicity in Vero and T24 cell lines evaluated by the MTT assay. The effect of TNTs on T24 bladder cancer cell radiosensitivity was also assessed, using cell proliferation and a clonogenic assay. The TNT nanostructures were synthesized and characterized by FESEM, EDS, TEM, FTIR, XRD and TGA. The results showed that the nanostructures have a tubular structure and that the exchange of Na+ ions for Zn2+ and incorporation of quercetin did not alter this morphology.
Website: https://www.selleckchem.com/products/gcn2ib.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team