Notes
![]() ![]() Notes - notes.io |
To determine whether a new index for multiple chronic conditions (MCCs) predicts poststroke functional outcome (FO), we developed and internally validated the new MCC index in patients with ischemic stroke.
A prospective cohort of patients with ischemic stroke (2008-2017) was interviewed at baseline and 90 days in the Brain Attack Surveillance in Corpus Christi Project. An average of 22 activities of daily living (ADL)/instrumental ADL (IADL) items measured the FO score (range 1-4) at 90 days. A FO score >3 (representing a lot of difficulty with ADL/IADLs) was considered unfavorable FO. A new index was developed using machine learning techniques to select and weight conditions and prestroke impairments.
Prestroke modified Rankin Scale (mRS) score, age, congestive heart failure (CHF), weight loss, diabetes, other neurologic disorders, and synergistic effects (dementia × age, CHF × renal failure, and prestroke mRS × prior stroke/TIA) were identified as important predictors in the MCC index. In the validation dataset, the index alone explained 31% of the variability in the FO score, was well-calibrated (
= 0.41), predicted unfavorable FO well (area under the receiver operating characteristic curve 0.81), and outperformed the modified Charlson Comorbidity Index in predicting the FO score and poststroke mRS.
A new MCC index was developed and internally validated to improve the prediction of poststroke FO. Novel predictors and synergistic interactions were identified.
This study provides Class II evidence that in patients with ischemic stroke, an index for MCC predicts FO at 90 days.
This study provides Class II evidence that in patients with ischemic stroke, an index for MCC predicts FO at 90 days.
To determine the involvement of subcortical regions in human epilepsy by analyzing direct recordings from these regions during epileptic seizures using stereo-EEG (SEEG).
We studied the SEEG recordings of a large series of patients (74 patients, 157 seizures) with an electrode sampling the thalamus and in some cases also the basal ganglia (caudate nucleus, 22 patients; and putamen, 4 patients). We applied visual analysis and signal quantification methods (Epileptogenicity Index [EI]) to their ictal recordings and compared electrophysiologic with clinical data.
We found that in 86% of patients, thalamus was involved during seizures (visual analysis) and 20% showed high values of epileptogenicity (EI >0.3). Basal ganglia may also disclose high values of epileptogenicity (9% in caudate nucleus) but to a lesser degree than thalamus (
< 0.01). We observed different seizure onset patterns including low voltage high frequency activities. We found high values of thalamic epileptogenicity in different epilepsy localizations, including opercular and motor epilepsies. We found no difference between epilepsy etiologies (cryptogenic vs malformation of cortical development,
= 0.77). Thalamic epileptogenicity was correlated with the extension of epileptogenic networks (
= 0.02, ρ 0.32). We found a significant effect (
< 0.05) of thalamic epileptogenicity regarding the postsurgical outcome (higher thalamic EI corresponding to higher probability of surgical failure).
Thalamic involvement during seizures is common in different seizure types. The degree of thalamic epileptogenicity is a possible marker of the epileptogenic network extension and of postsurgical prognosis.
Thalamic involvement during seizures is common in different seizure types. The degree of thalamic epileptogenicity is a possible marker of the epileptogenic network extension and of postsurgical prognosis.
To compare the effectiveness of glatiramer acetate (GA) vs intramuscular interferon beta-1a (IFN-β-1a), we applied a previously published statistical method aimed at identifying patients' profiles associated with efficacy of treatments.
Data from 2 independent multiple sclerosis datasets, a randomized study (the Combination Therapy in Patients With Relapsing-Remitting Multiple Sclerosis [CombiRx] trial, evaluating GA vs IFN-β-1a) and an observational cohort extracted from MSBase, were used to build and validate a treatment response score, regressing annualized relapse rates (ARRs) on a set of baseline predictors.
The overall ARR ratio of GA to IFN-β-1a in the CombiRx trial was 0.72. The response score (made up of a linear combination of age, sex, relapses in the previous year, disease duration, and Expanded Disability Status Scale score) detected differential response of GA vs IFN-β-1a in the trial, patients with the largest benefit from GA vs IFN-β-1a (lower score quartile) had an ARR ratio of 0.40 (95% confidence interval [CI] 0.25-0.63), those in the 2 middle quartiles of 0.90 (95% CI 0.61-1.34), and those in the upper quartile of 1.14 (95% CI 0.59-2.18) (heterogeneity
= 0.012); this result was validated on MSBase, with the corresponding ARR ratios of 0.58 (95% CI 0.46-0.72), 0.92 (95% CI 0.77-1.09,) and 1.29 (95% CI 0.97-1.71); heterogeneity
< 0.0001).
We demonstrate the possibility of a criterion, based on patients' characteristics, to choose whether to treat with GA or IFN-β-1a. This result, replicated on an independent real-life cohort, may have implications for clinical decisions in everyday clinical practice.
We demonstrate the possibility of a criterion, based on patients' characteristics, to choose whether to treat with GA or IFN-β-1a. This result, replicated on an independent real-life cohort, may have implications for clinical decisions in everyday clinical practice.
To describe the prevalence and characteristics of sleep-disordered breathing (SDB) in a large cohort of patients with genetically confirmed mitochondrial diseases.
This is a prospective observational study performed at the Neurophysiopatology Unit of Fondazione Policlinico Universitario A. Gemelli IRCCS. All participants had a defined mitochondrial disease and were investigated by full-night polysomnography.
One hundred three consecutive patients were enrolled. SDB was demonstrated in 49 patients (47.6%). Regarding phenotypes, we found differences in distribution between the groups patients affected by progressive external ophthalmoplegia with single or multiple mtDNA deletions frequently had obstructive apneas (50% and 43.8%) or REM-related hypoventilation when associated with m.3243A>G mutations (75%). Furthermore, a high percentage of participants with maternally inherited diabetes and deafness and myoclonic epilepsy with ragged-red fibers syndromes were characterized by obstructive sleep apnea and REM-related hypoventilation, respectively. In contrast to what has been described in previous studies, central sleep apnea was rarely reported in our cohort.
SDB has a higher prevalence in mitochondrial diseases compared to general population-based data. Overall, these results suggest that patients characterized by a specific phenotype-genotype combination are most at risk of developing a specific subgroup of SDB. The early identification of this disorder is crucial in the management of these fragile patients.
SDB has a higher prevalence in mitochondrial diseases compared to general population-based data. Overall, these results suggest that patients characterized by a specific phenotype-genotype combination are most at risk of developing a specific subgroup of SDB. The early identification of this disorder is crucial in the management of these fragile patients.Quantum computers and simulators may offer significant advantages over their classical counterparts, providing insights into quantum many-body systems and possibly improving performance for solving exponentially hard problems, such as optimization and satisfiability. Here, we report the implementation of a low-depth Quantum Approximate Optimization Algorithm (QAOA) using an analog quantum simulator. We estimate the ground-state energy of the Transverse Field Ising Model with long-range interactions with tunable range, and we optimize the corresponding combinatorial classical problem by sampling the QAOA output with high-fidelity, single-shot, individual qubit measurements. We execute the algorithm with both an exhaustive search and closed-loop optimization of the variational parameters, approximating the ground-state energy with up to 40 trapped-ion qubits. We benchmark the experiment with bootstrapping heuristic methods scaling polynomially with the system size. We observe, in agreement with numerics, that the QAOA performance does not degrade significantly as we scale up the system size and that the runtime is approximately independent from the number of qubits. We finally give a comprehensive analysis of the errors occurring in our system, a crucial step in the path forward toward the application of the QAOA to more general problem instances.The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the urgent need to rapidly develop therapeutic strategies for such emerging viruses without effective vaccines or drugs. Here, we report a decoy nanoparticle against COVID-19 through a powerful two-step neutralization approach virus neutralization in the first step followed by cytokine neutralization in the second step. The nanodecoy, made by fusing cellular membrane nanovesicles derived from human monocytes and genetically engineered cells stably expressing angiotensin converting enzyme II (ACE2) receptors, possesses an antigenic exterior the same as source cells. By competing with host cells for virus binding, these nanodecoys effectively protect host cells from the infection of pseudoviruses and authentic SARS-CoV-2. Moreover, relying on abundant cytokine receptors on the surface, the nanodecoys efficiently bind and neutralize inflammatory cytokines including interleukin 6 (IL-6) and granulocyte-macrophage colony-stimulating factor (GM-CSF), and significantly suppress immune disorder and lung injury in an acute pneumonia mouse model. see more Our work presents a simple, safe, and robust antiviral nanotechnology for ongoing COVID-19 and future potential epidemics.Agrobacterium tumefaciens C58 contains four replicons, circular chromosome (CC), linear chromosome (LC), cryptic plasmid (pAt), and tumor-inducing plasmid (pTi), and grows by polar growth from a single growth pole (GP), while the old cell compartment and its old pole (OP) do not elongate. We monitored the replication and segregation of these four genetic elements during polar growth. The three largest replicons (CC, LC, pAt) reside in the OP compartment prior to replication; post replication one copy migrates to the GP prior to division. CC resides at a fixed location at the OP and replicates first. LC does not stay fixed at the OP once the cell cycle begins and replicates from varied locations 20 min later than CC. pAt localizes similarly to LC prior to replication, but replicates before the LC and after the CC. pTi does not have a fixed location, and post replication it segregates randomly throughout old and new cell compartments, while undergoing one to three rounds of replication during a single cell cycle. Segregation of the CC and LC is dependent on the GP and OP identity factors PopZ and PodJ, respectively. Without PopZ, replicated CC and LC do not efficiently partition, resulting in sibling cells without CC or LC. Without PodJ, the CC and LC exhibit abnormal localization to the GP at the beginning of the cell cycle and replicate from this position. These data reveal PodJ plays an essential role in CC and LC tethering to the OP during early stages of polar growth.
My Website: https://www.selleckchem.com/products/tecovirimat.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team