NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Multi-Dimensional Characteristic Blend Circle for No-Reference Quality Evaluation of In-the-Wild Video tutorials.
The age of males and females at first sexual maturity was 111 days and 104 days, respectively. The growth difference between genders might be related to environment.Microbial mineralization of organic phosphorus is an important component of marine phosphorus cycle. The research on organic phosphate-mineralizing bacteria (OPB) is helpful to reveal microbial driving mechanism of organic phosphorus mineralization in eutrophic sea area. The diversity and community characteristics of OPB were examined by Illumina high-throughput sequencing using the primer sets phoX in the sea area between Minjiang Estuary to Pingtan in April (spring) and July (summer) 2019. The results showed that the Shannon index of OPB in the surface seawater samples ranged from 3.21 to 7.91, and that the diversity at each station was greater in spring than that in summer. Shannon index of OPB in the sediment samples ranged from 2.04 to 8.70, which was greater in summer than that in spring. Shannon index of OPB in surface seawater of each station was higher than that of sediment in spring, while it was in adverse in summer. Nine phyla of OPB were detected in surface seawater, with Proteobacteria and Cyanoter and sediment might play an important role in phosphorus cycle in this sea area.To understand the decomposition of cattle dung in Seriphidium-dominated desert, the changes of dung physical and chemical properties were determined by setting different stacking times (0, 7, 29, 48, 58 h) in May (spring) and September (autumn), respectively. Mesh cage with different openings (no mesh cage, opening up and down, opening up, totally enclosed) were set up to explore the effects of different ecological functional groups of dung beetles on decomposition. The results showed that species richness of dung beetles in spring was significantly higher than that in autumn, and that the abundance of dung beetles in autumn was significantly higher than that in spring. The losses of moisture, total carbon, total nitrogen and total phosphorus in dung were mainly concentrated during 0-29 h in spring, being decreased by 39.4%, 13.9%, 32.1% and 26.7% at 29 h, respectively. Neutral detergent fiber and acid detergent fiber of the dung stacked for 58 h decreased significantly by 8.0% and 16.0% respectively. In autumn, moisture, neutral detergent fiber and acid detergent fiber decreased most rapidly during 0-7 h, being decreased by 85.6%, 10.2% and 20.2% at 7 h, respectively. The concentrations of neutral detergent fiber and acid detergent fiber increased during 7-58 h by 20.0% and 13.7%, respectively. The decomposition of total carbon, total nitrogen and total phosphorus mainly concentrated during 0-29 h, being reduced by17.5%, 55.0% and 64.8%, respectively. The mesh cage with different openings effectively prevented the entering of dung beetles from the corresponding ecological functional groups. With the increases of functional groups of dung beetles, the decomposition rate accelerated, with cattle dung of no mesh cage being significantly higher than other treatments. The species richness and abundance of dung beetles and the stacking time of dung significantly affected the decomposition of cattle dung.Heavy metal is an important environmental stress that threatens water quality and ecological health of surface waters. Therefore, it is vital to identify the responses of lake community to long-term pollution for sustainable ecological restoration of polluted lakes. From June 2017 to March 2018, we conducted a seasonal survey of phytoplankton and environmental factors in Datun Lake, which had a decadal history of tailing-related arsenic contamination. Consistent with results from previous studies, phytoplankton were dominated by As-tolerant taxa such as Cyanophyta. Results of the analysis of similarities and analysis of variance showed that there were significant temporal variations in phytoplankton community structure and biomass, but without spatial variation. Results of the Pearson correlation analysis demonstrated that the total phytoplankton biomass was positively related to lake-water soluble orthophosphate and arsenic, which was consistent with the differential effect of arsenic on algae growth (e.g. promotion at low concentration and suppression at high concentration). The increases of phosphate might alleviate the toxic impacts of arsenic on phytoplankton. Redundancy analysis showed that the soluble nutrients and arsenic were significant factors driving phytoplankton community variations. The results of variation partitioning demonstrated that nutrients and water temperature explained 17.6% and 3.8% of community variations, respectively, with strong interaction with arsenic (15.1%). learn more Arsenic did not affect phytoplankton community assembly, indicating that the dominant algae were tolerant to arsenic and thus highly insensitive to the arsenic stress. Therefore, the seasonal variations of phytoplankton dominated by As-tolerant algae in Datun demonstrated that the low-As promotion effect on phytoplankton should be considered in ecological restoration of polluted lakes.We examined the growth and physiological characteristics of Chlorophytum comosum and Chlorophytum comosum var. variegatum by hydroponics at different Cd2+ concentrations (0, 20, 80, 200 μmol·L-1). The results showed that 20 μmol·L-1 Cd2+ did not affect those two varieties, with no changes of single leaf area, total leaf area, chlorophyll (Chl) a content, Chl (a+b) content, carotenoid content, Chla/Chlb value, intercellular carbon dioxide concentration (Ci) and transpiration rate (Tr) compared with the control (CK). Under the 80 μmol·L-1 Cd2+ stress, the initial fluorescence (Fo) and non-photochemical quenching coefficient (NPQ) were the highest for both varieties. As for Cd2+ at 200 μmol·L-1, the biomass, chlorophyll content, maximum net photosynthetic rate (Pn), stomatal conductance (gs), maximum photochemical quantum yield (Fv/Fm), actual photochemical quantum yield Y(II), the transfer factor (TF) of both varieties and all parts biomass decreased to the lowest, while peroxidase (POD), ascorbic acid peroxidase (APX) and catalase (CAT) activities of two varieties and MDA content of C. comosum var. variegatum increased in different degrees. With the increases of Cd2+ stress, the Cd content in organs of two varieties showed an increasing trend, with higher Cd accumulation in roots. C. comosum had higher Cd content and bioconcentration factor (BCF) in all organs than C. comosum var. variegatum. It suggested that two varieties had the ability to resist Cd stress. The tolerance of C. comosum was stronger, and thus could be considered as a green plant to remediate Cd contaminated water or soil.
Homepage: https://www.selleckchem.com/products/cilengitide-emd-121974-nsc-707544.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.