Notes
Notes - notes.io |
In fetal neurosonography, aligning two-dimensional (2D) ultrasound scans to their corresponding plane in the three-dimensional (3D) space remains a challenging task. In this paper, we propose a convolutional neural network that predicts the position of 2D ultrasound fetal brain scans in 3D atlas space. Instead of purely supervised learning that requires heavy annotations for each 2D scan, we train the model by sampling 2D slices from 3D fetal brain volumes, and target the model to predict the inverse of the sampling process, resembling the idea of self-supervised learning. We propose a model that takes a set of images as input, and learns to compare them in pairs. The pairwise comparison is weighted by the attention module based on its contribution to the prediction, which is learnt implicitly during training. The feature representation for each image is thus computed by incorporating the relative position information to all the other images in the set, and is later used for the final prediction. We benchmark our model on 2D slices sampled from 3D fetal brain volumes at 18-22 weeks' gestational age. Using three evaluation metrics, namely, Euclidean distance, plane angles and normalized cross correlation, which account for both the geometric and appearance discrepancy between the ground-truth and prediction, in all these metrics, our model outperforms a baseline model by as much as 23%, when the number of input images increases. We further demonstrate that our model generalizes to (i) real 2D standard transthalamic plane images, achieving comparable performance as human annotations, as well as (ii) video sequences of 2D freehand fetal brain scans.Image reconstruction from radio-frequency (RF) data is crucial for ultrafast plane wave ultrasound (PWUS) imaging. Compared with the traditional delay-and-sum (DAS) method based on relatively imprecise assumptions, sparse regularization (SR) method directly solves the inverse problem of image reconstruction and has presented significant improvement in the image quality when the frame rate remains high. However, the computational complexity of SR is too high for practical implementation, which is inherently associated with its iterative process. In this work, a deep neural network (DNN), which is trained with an incorporated loss function including sparse regularization terms, is proposed to reconstruct PWUS images from RF data with significantly reduced computational time. It is remarkable that, a self-supervised learning scheme, in which the RF data are utilized as both the inputs and the labels during the training process, is employed to overcome the lack of the "ideal" ultrasound images as the labels for DNN. In addition, it has been also verified that the trained network can be used on the RF data obtained with steered plane waves (PWs), and thus the image quality can be further improved with coherent compounding. Using simulation data, the proposed method has significantly shorter reconstruction time (∼10 ms) than the conventional SR method (∼1-5 mins), with comparable spatial resolution and 1.5-dB higher contrast-to-noise ratio (CNR). Besides, the proposed method with single PW can achieve higher CNR than DAS with 75 PWs in reconstruction of in-vivo images of human carotid arteries.In recent years, deep learning-based image analysis methods have been widely applied in computer-aided detection, diagnosis and prognosis, and has shown its value during the public health crisis of the novel coronavirus disease 2019 (COVID-19) pandemic. Chest radiograph (CXR) has been playing a crucial role in COVID-19 patient triaging, diagnosing and monitoring, particularly in the United States. Considering the mixed and unspecific signals in CXR, an image retrieval model of CXR that provides both similar images and associated clinical information can be more clinically meaningful than a direct image diagnostic model. In this work we develop a novel CXR image retrieval model based on deep metric learning. Unlike traditional diagnostic models which aim at learning the direct mapping from images to labels, the proposed model aims at learning the optimized embedding space of images, where images with the same labels and similar contents are pulled together. The proposed model utilizes multi-similarity loss wittal resource planning. These results demonstrate our deep metric learning based image retrieval model is highly efficient in the CXR retrieval, diagnosis and prognosis, and thus has great clinical value for the treatment and management of COVID-19 patients.Ten undescribed anthranoids, including three anthraquinone acetals as racemic mixtures, (±)-kenganthranol G-I, and seven prenylated anthranols, (±)-kenganthranol J-M and harunganol G-I, together with thirteen known compounds, were isolated from the stem bark of Harungana madagascariensis. The structures of (±)-kenganthranol G and (±)-kenganthranol J were confirmed by X-ray crystallography. (±)-Kenganthranol G was separated into (+)-kenganthranol G and (-)-kenganthranol G by chiral HPLC and their absolute configurations were established by electronic circular dichroism. (±)-Kenganthranol L displayed α-glucosidase inhibitory activity with an IC50 of 4.4 μM.Municipal Solid Waste Management is yet to be eco-effectively performed, especially in developing countries. In Brazil, a considerable fraction of waste has been improperly landfilled, generating environmental, social and economic problems. In 2018, the government of the state of Paraná released a revised version of its waste management plan, defining improvement strategies to be gradually implemented until 2038. However, these strategies' eco-effectiveness has not been forecasted, nor the plan was deployed to the regional level. This research aims to fill this gap, downscaling the plan to the region of Norte Pioneiro, simulating its implementation and monitoring environmental and economic benefits. GSK3235025 The dynamics of waste generation, collection and disposal are investigated using an agent-based model, considering the four population growth scenarios addressed in the plan. Targets for strategies of waste reduction, collection, source-separation and charging of waste fees are modelled. Multiple simulation runs were performed and outputs assessed and discussed.
My Website: https://www.selleckchem.com/products/epz015666.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team