Notes
![]() ![]() Notes - notes.io |
05) and that a higher CN was associated with higher total number born (P less then 0.05), number born alive (P less then 0.05), number of weaned piglets, and birth weight. Conclusions The present study provides comprehensive CNVRs for Meishan and Duroc pigs through large-scale population resequencing. Our results provide a supplement for the high-resolution map of copy number variation in the porcine genome and valuable information for the investigation of genomic structural variation underlying traits of interest in pig. In addition, the association results provide evidence for AHR as a candidate gene associated with reproductive traits that can be used as a genetic marker in pig breeding programs. © The Author(s) 2020.The centrosymmetric nature of silica fibre precludes the realisation of second-order nonlinear processes in optical fibre systems. Recently, the integration of 2D materials with optical fibres has opened up a great opportunity to develop all-fibre active devices. Here, we demonstrate high-efficiency second-order nonlinear frequency conversions in an optical microfibre assisted with few-layer gallium selenide (GaSe) nanoflakes. Attributed to the strong evanescent field of the microfibre and ultrahigh second-order nonlinearity of the GaSe nanoflakes, second harmonic generation (SHG) and sum-frequency generation (SFG) are effectively achieved with only sub-milliwatt continuous-wave (CW) lasers in the wavelength range of 1500-1620 nm, covering the C and L telecom bands. The SHG intensity from the microfibre is enhanced by more than four orders of magnitude with the assistance of the GaSe nanoflakes on fibre nonlinear processes. Moreover, in the SFG process, the intensity transfer between different frequencies can be effectively manipulated by changing the wavelengths and powers of two pump lasers. The realised strong second-order nonlinearity in the GaSe-integrated microfibre might expand the applications of all-fibre devices in all-optical signal processing and new light source generation at awkward wavelengths. © The Author(s) 2020.Lateral optical forces induced by linearly polarized laser beams have been predicted to deflect dipolar particles with opposite chiralities toward opposite transversal directions. These "chirality-dependent" forces can offer new possibilities for passive all-optical enantioselective sorting of chiral particles, which is essential to the nanoscience and drug industries. However, previous chiral sorting experiments focused on large particles with diameters in the geometrical-optics regime. Here, we demonstrate, for the first time, the robust sorting of Mie (size ~ wavelength) chiral particles with different handedness at an air-water interface using optical lateral forces induced by a single linearly polarized laser beam. The nontrivial physical interactions underlying these chirality-dependent forces distinctly differ from those predicted for dipolar or geometrical-optics particles. The lateral forces emerge from a complex interplay between the light polarization, lateral momentum enhancement, and out-of-plane light refraction at the particle-water interface. The sign of the lateral force could be reversed by changing the particle size, incident angle, and polarization of the obliquely incident light. © The Author(s) 2020.Mode-locked fibre lasers (MLFLs) are fundamental building blocks of many photonic systems used in industrial, scientific and biomedical applications. To date, 1-2 μm MLFLs have been well developed; however, passively mode-locked fibre lasers in the visible region (380-760 nm) have never been reported. Here, we address this challenge by demonstrating an all-fibre visible-wavelength passively mode-locked picosecond laser at 635 nm. The 635 nm mode-locked laser with an all-fibre figure-eight cavity uses a Pr/Yb codoped ZBLAN fibre as the visible gain medium and a nonlinear amplifying loop mirror as the mode-locking element. First, we theoretically predict and analyse the formation and evolution of 635 nm mode-locked pulses in the dissipative soliton resonance (DSR) regime by solving the Ginzburg-Landau equation. Then, we experimentally demonstrate the stable generation of 635 nm DSR mode-locked pulses with a pulse duration as short as ~96 ps, a radio-frequency signal-to-noise ratio of 67 dB and a narrow spectral bandwidth of 1 nm) and modulated optical spectrum. This work represents an important step towards miniaturized ultrafast fibre lasers in the visible spectral region. © The Author(s) 2020.High-temperature infrared (IR) camouflage is crucial to the effective concealment of high-temperature objects but remains a challenging issue, as the thermal radiation of an object is proportional to the fourth power of temperature (T 4). Here, we experimentally demonstrate high-temperature IR camouflage with efficient thermal management. By combining a silica aerogel for thermal insulation and a Ge/ZnS multilayer wavelength-selective emitter for simultaneous radiative cooling (high emittance in the 5-8 μm non-atmospheric window) and IR camouflage (low emittance in the 8-14 μm atmospheric window), the surface temperature of an object is reduced from 873 to 410 K. Devimistat price The IR camouflage is demonstrated by indoor/outdoor (with/without earthshine) radiation temperatures of 310/248 K for an object at 873/623 K and a 78% reduction in with-earthshine lock-on range. This scheme may introduce opportunities for high-temperature thermal management and infrared signal processing. © The Author(s) 2020.Optical logic operations lie at the heart of optical computing, and they enable many applications such as ultrahigh-speed information processing. However, the reported optical logic gates rely heavily on the precise control of input light signals, including their phase difference, polarization, and intensity and the size of the incident beams. Due to the complexity and difficulty in these precise controls, the two output optical logic states may suffer from an inherent instability and a low contrast ratio of intensity. Moreover, the miniaturization of optical logic gates becomes difficult if the extra bulky apparatus for these controls is considered. As such, it is desirable to get rid of these complicated controls and to achieve full logic functionality in a compact photonic system. Such a goal remains challenging. Here, we introduce a simple yet universal design strategy, capable of using plane waves as the incident signal, to perform optical logic operations via a diffractive neural network. Physically, the incident plane wave is first spatially encoded by a specific logic operation at the input layer and further decoded through the hidden layers, namely, a compound Huygens' metasurface. That is, the judiciously designed metasurface scatters the encoded light into one of two small designated areas at the output layer, which provides the information of output logic states. Importantly, after training of the diffractive neural network, all seven basic types of optical logic operations can be realized by the same metasurface. As a conceptual illustration, three logic operations (NOT, OR, and AND) are experimentally demonstrated at microwave frequencies. © The Author(s) 2020.The phase stability of an optical coherence elastography (OCE) system is the key determining factor for achieving a precise elasticity measurement, and it can be affected by the signal-to-noise ratio (SNR), timing jitters in the signal acquisition process, and fluctuations in the optical path difference (OPD) between the sample and reference arms. In this study, we developed an OCE system based on swept-source optical coherence tomography (SS-OCT) with a common-path configuration (SS-OCECP). Our system has a phase stability of 4.2 mrad without external stabilization or extensive post-processing, such as averaging. This phase stability allows us to detect a displacement as small as ~300 pm. A common-path interferometer was incorporated by integrating a 3-mm wedged window into the SS-OCT system to provide intrinsic compensation for polarization and dispersion mismatch, as well as to minimize phase fluctuations caused by the OPD variation. The wedged window generates two reference signals that produce two OCT images, allowing for averaging to improve the SNR. Furthermore, the electrical components are optimized to minimize the timing jitters and prevent edge collisions by adjusting the delays between the trigger, k-clock, and signal, utilizing a high-speed waveform digitizer, and incorporating a high-bandwidth balanced photodetector. We validated the SS-OCECP performance in a tissue-mimicking phantom and an in vivo rabbit model, and the results demonstrated a significantly improved phase stability compared to that of the conventional SS-OCE. To the best of our knowledge, we demonstrated the first SS-OCECP system, which possesses high-phase stability and can be utilized to significantly improve the sensitivity of elastography. © The Author(s) 2020.The characteristics of tumour development and metastasis relate not only to genomic heterogeneity but also to spatial heterogeneity, associated with variations in the intratumoural arrangement of cell populations, vascular morphology and oxygen and nutrient supply. While optical (photonic) microscopy is commonly employed to visualize the tumour microenvironment, it assesses only a few hundred cubic microns of tissue. Therefore, it is not suitable for investigating biological processes at the level of the entire tumour, which can be at least four orders of magnitude larger. In this study, we aimed to extend optical visualization and resolve spatial heterogeneity throughout the entire tumour volume. We developed an optoacoustic (photoacoustic) mesoscope adapted to solid tumour imaging and, in a pilot study, offer the first insights into cancer optical contrast heterogeneity in vivo at an unprecedented resolution of less then 50 μm throughout the entire tumour mass. Using spectral methods, we resolve unknown patterns of oxygenation, vasculature and perfusion in three types of breast cancer and showcase different levels of structural and functional organization. To our knowledge, these results are the most detailed insights of optical signatures reported throughout entire tumours in vivo, and they position optoacoustic mesoscopy as a unique investigational tool linking microscopic and macroscopic observations. © The Author(s) 2020.Background Optimal fluid therapy in the perioperative and critical care settings depends on understanding the underlying cardiovascular physiology and individualizing assessment of the dynamic patient state. Methods The Perioperative Quality Initiative (POQI-5) consensus conference brought together an international team of multidisciplinary experts to survey and evaluate the literature on the physiology of volume responsiveness and perioperative fluid management. The group used a modified Delphi method to develop consensus statements applicable to the physiologically based management of intravenous fluid therapy in the perioperative setting. Discussion We discussed the clinical and physiological evidence underlying fluid responsiveness and venous capacitance as relevant factors in fluid management and developed consensus statements with clinical implications for a broad group of clinicians involved in intravenous fluid therapy. Two key concepts emerged as follows (1) The ultimate goal of fluid therapy and hemodynamic management is to support the conditions that enable normal cellular metabolic function in order to produce optimal patient outcomes, and (2) optimal fluid and hemodynamic management is dependent on an understanding of the relationship between pressure, volume, and flow in a dynamic system which is distensible with variable elastance and capacitance properties.
Website: https://www.selleckchem.com/products/cpi-613.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team