Notes
Notes - notes.io |
We experimentally investigate higher-order seeded modulation instability in an optical fiber experiment. The recirculating loop configuration with round trip losses compensation enables the observation in single-shot of the spatiotemporal evolution of an initially modulated continuous field revealing intricate yet deterministic dynamics. By tuning the modulation period, a continuous transition between perfectly coherent and purely noise-driven dynamics is observed that we characterize by means of a statistical study.Quasiperiodicity is a form of spatial order that has been observed in quasicrystalline matter but not light. We construct a quasicrystalline surface out of a light emitting diode. Using a nanoscale waveguide as a microscope (NSOM), we directly image the light field at the surface of the diode. Here we show, using reciprocal space representations of the images, that the light field is quasiperiodic. We explain the structure of the light field with wave superposition. Periodic ordering is limited to at most six-fold symmetry. The light field exhibits 12-fold quasisymmetry, showing order while disproving periodicity. This demonstrates that a new class, consisting of projections from hyperspace, exists in the taxonomy of light ordering.A single-cycle light source in the near infrared is demonstrated enabling sensitive applications of ultrafast optical field control of electronic transport. The compact Erfiber system generates passively phase-locked pulses with broadband spectra covering 150 THz to 350 THz at a duration of 4.2 fs and 40 MHz repetition rate. A second output arm is equipped with an electro-optic modulator (EOM) that switches the arrival time of the pulses by 700 ps at arbitrary frequencies up to 20 MHz, enabling timing modulation of the pump pulse without changing the average intensity. As a benchmark demonstration, we investigate the carrier relaxation dynamics in low-temperature-grown InGaAs (LT-InGaAs) using quantum interference currents (QuICs).We demonstrate high-power laser delivery exceeding 1 kilowatt through a 5-meter homemade anti-resonant hollow-core fiber (AR-HCF) at 1-µm wavelength. Laser-induced damage to the fiber coating and jacket glass is experimentally observed respectively for different incident laser powers from a few hundred watts up to nearly 1.5 kilowatts. The cladding microstructure of the AR-HCF is free of damage at the incident end when 80% of the 1.5-kW incident power is coupled in. The deviation of an incident laser beam from the core to the cladding causes no damage but only deterioration of the coupling efficiency. The potential of the AR-HCF for higher-power laser delivery is discussed.Mode-locking is a broad concept that encompasses different processes enabling short optical pulse formation in lasers. It typically requires an intracavity mechanism that discriminates between single and collective mode lasing, which can be complex and sometimes adds noise. Moreover, known mode-locking schemes do not guarantee phase stability of the carrier wave. Here, we theoretically propose that injecting a detuned signal seamlessly leads to mode-locking in fiber lasers. We show that phase-locked pulses, akin to cavity solitons, exist in a wide range of parameters. In that regime the laser behaves as a passive resonator due to the non-instantaneous gain saturation.Existing hyperspectral image (HSI) super-resolution methods fusing a high-resolution RGB image (HR-RGB) and a low-resolution HSI (LR-HSI) always rely on spatial degradation and handcrafted priors, which hinders their practicality. To address these problems, we propose a novel, to the best of our knowledge, method with two transfer models a window-based linear mixing (W-LM) model and a feature transfer model. Specifically, W-LM initializes a high-resolution HSI (HR-HSI) by transferring the spectra from the LR-HSI to the HR-RGB. By using the proposed feature transfer model, the HR-RGB multi-level features extracted by a pre-trained convolutional neural network (CNN) are then transferred to the initialized HR-HSI. The proposed method fully exploits spectra of LR-HSI and multi-level features of HR-RGB and achieves super-resolution without requiring the spatial degradation model and any handcrafted priors. The experimental results for 32 × super-resolution on two public datasets and our real image set demonstrate the proposed method outperforms eight state-of-the-art existing methods.An erratum is presented to correct the laser pulse energy applied on the fiber during grating fabrication in Opt. Lett.47(2), 249 (2022)10.1364/OL.450047.The LED-pumping technology is used for the first time, to the best of our knowledge, to develop a complete master oscillator power amplifier (MOPA) system including a multipass amplifier. A pumping head using an original slab architecture is developed integrating a CrLiSAF slab pumped by 2112 blue LEDs via a CeYAG luminescent concentrator. Selleckchem Cremophor EL The slab configuration enables the reaching of a large number of passes-up to 22-together with access to efficient cooling, allowing for a repetition rate scale up. For 22 passes, the amplifier delivers pulses with energy up to 2.4 mJ at 10-Hz repetition rate with a gain of 4.36 at 825 nm. A complete study of the MOPA is described, concluding in nearly constant performances versus the repetition rate, up to 100 Hz.We experimentally demonstrate turbulence mitigation in a 200-Gbit/s quadrature phase-shift keying (QPSK) orbital-angular-momentum (OAM) mode-multiplexed system using simple power measurements for determining the modal coupling matrix. To probe and mitigate turbulence, we perform the following (i) sequentially transmit multiple probe beams at 1550-nm wavelength each with a different combination of Laguerre-Gaussian (LG) modes; (ii) detect the power coupling of each probe beam to LG0,0 for determining the complex modal coupling matrix; (iii) calculate the conjugate phase of turbulence-induced spatial phase distortion; (iv) apply this conjugate phase to a spatial light modulator (SLM) at the receiver to mitigate the turbulence distortion for the 1552-nm mode-multiplexed data-carrying beams. The probe wavelength is close enough to the data wavelength such that it experiences similar turbulence, but is far enough away such that the probe beams do not affect the data beams and can all operate simultaneously. Our experimental results show that with our turbulence mitigation approach the following occur (a) the inter-channel crosstalk is reduced by ∼25 and ∼21 dB for OAM +1 and -2 channels, respectively; (b) the optical signal-to-noise ratio (OSNR) penalty is less then 1 dB for both OAM channels for a bit error rate (BER) at the 7% forward error correction (FEC) limit, compared with the no turbulence case.This Letter proposes a selective encryption scheme for three-dimensional (3D) medical images using light-field imaging and two-dimensional (2D) Moore cellular automata (MCA). We first utilize convolutional neural networks (CNNs) to obtain the saliency of each elemental image (EI) originating from a 3D medical image with different viewpoints, and successfully extract the region of interest (ROI) in each EI. In addition, we use 2D MCA with balanced rule to encrypt the ROI of each EI. Finally, the decrypted elemental image array (EIA) can be reconstructed into a full-color and full-parallax 3D image using the display device, which can be visually displayed to doctors so that they can observe from different angles to design accurate treatment plans and improve the level of medical treatment. Our work also requires no preprocessing of 3D images, which is more efficient than the method of using slices for encryption.The manipulation of optical modes directly in a multimode waveguide without affecting the transmission of undesired signal carriers is of significance to realize a flexible and simple structured optical network-on-chip. In this Letter, an arbitrary optical mode and wavelength carrier access scheme is proposed based on a series of multimode microring resonators and one multimode bus waveguide with constant width. As a proof-of-concept, a three-mode (de)multiplexing device is designed, fabricated, and experimentally demonstrated. A new, to the best of our knowledge, phase-matching idea is employed to keep the bus waveguide width constant. The mode coupling regions and transmission regions of the microring resonators are designed carefully to selectively couple and transmit different optical modes. The extinction ratio of the microring resonators is larger than 21.0 dB. The mode and wavelength cross-talk for directly (de)multiplexing are less than -12.8 dB and -19.0 dB, respectively. It would be a good candidate for future large-scale multidimensional optical networks.A superconducting nanowire single-photon imager (SNSPI) uses a time-multiplexing method to reduce the readout complexity. However, due to the serial connection, the nanowire should be uniform so that a common bias can set all segments of the nanowire to their maximum detection efficiency, which becomes more challenging as the scalability (i.e., the length of the nanowire) increases. Here, we have developed a 64-pixel SNSPI based on amorphous Mo80Si20 film, which yielded a uniform nanowire and slow transmission line. Adjacent detectors were separated by delay lines, giving an imaging field of 270 µm × 240 µm. Benefiting from the high kinetic inductance of Mo80Si20 films, the delay line gave a phase velocity as low as 4.6 µm/ps. The positions of all pixels can be read out with a negligible electrical cross talk of 0.02% by using cryogenic amplifiers. The timing jitter was 100.8 ps. Saturated internal quantum efficiency was observed at a wavelength of 1550 nm. These results demonstrate that amorphous film is a promising material for achieving SNSPIs with large scalability and high efficiency.Multibit logic gates are of great importance in optical switching and photonic computing. A 4-bit parallel optical NOT logic gate is demonstrated by an optical switching/computing engine based on a multimode waveguide. The multimode interference (MMI) patterns can be altered by thermal electrodes because the number of guided modes, their profiles, and propagation constants can all be altered via the thermo-optic effect. Instead of conventional forward design based on time-consuming simulations, the proposed engine can update the thermal electrodes automatically and monitor the change of the interference in a synchronized and rapid way until the desired function is reached, all experimentally. We name the system "function programmable waveguide engine" (FPWE). As opposed to solutions where the phase or amplitude of light is taken as the signal, the input stays in the electronic domain, and the output is converted into optical intensity variations, calculated from a truth table. This simple, low-cost yet powerful engine may lead to the development of a new set of devices for on-chip photonic computing and signal switching.An acoustic coupling scheme largely determines the performance of optical-resolution photoacoustic microscopy (OR-PAM), including practicability, sensitivity, and stability. In this study, we propose OR-PAM based on a local-flexible acoustic coupling scheme, which includes a well-designed combiner connecting a set of circulating systems. The combiner integrates an objective lens and an ultrasonic transducer, controls the water level, restricts the flow rate, and drains bubbles. The circulating system provides sustained and steady flowing water. The flowing water constrained in the combiner and the circulating system forms a flexible and stable local contact between the sample and the transducer. Phantom experiments demonstrate that the proposed method can maintain high optical resolution but improve the detection sensitivity by approximately 1.9 times in comparison to dry coupling. In vivo imaging experiments of the mouse eyeground are conducted to examine the practicability of the proposed system in biomedicine.
My Website: https://www.selleckchem.com/products/cremophor-el.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team