Notes
![]() ![]() Notes - notes.io |
Mechanical interlocking of a nanohoop fluorophore and a reactive thread couples the benefits of a reaction-based probe with a sterically congested active site for enhanced selectivity. Advantageously, the thread design uses dual function stoppers that act as both a quencher and a trigger for sensing. In progress toward expanding this approach to biologically relevant analytes, this system is used to demonstrate steric differentiation and provide a selective turn-on fluorescent response with size selectivity for HS- rather than larger thiolates.A novel, practical, highly efficient, and transition metal free nitrogen insertion reaction for the synthesis of 2,3-disubstituted quinazolinone derivatives was developed. Diverse functionalized 3-indolinone-2-carboxylates and nitrosoarenes with a wide range of substituted nitrosobenzenes, nitrosopyridines, dibenzofuranyl, or dibenzothienyl nitroso compounds worked smoothly to give 2,3-disubstituted quinazolinone derivatives in good to excellent yields (69-98%). A gram-scale reaction was achieved, and an afloqualone analogue was synthesized under the mild reaction conditions.We herein report an unprecedented photoinduced cyclization/defluorination domino process of N-allylbromodifluoroacetamide with cyclic secondary amines. Consequently, a wide array of valuable 3-fluoro-1,5-dihydro-2H-pyrrol-2-ones were facilely prepared from readily available starting materials under mild conditions. Preliminary mechanistic investigations suggest that a radical chain propagation and amine-promoted defluorination pathway are presumably involved in this transformation.Plasmonic structures confine electromagnetic energy at the nanoscale, resulting in local, inhomogeneous, controllable heating, but reading out the temperature using optical techniques poses a difficult challenge. Here, we report on the optical thermometry of individual gold nanorod trimers that exhibit multiple wavelength-dependent plasmon modes resulting in measurably different local temperature distributions. Specifically, we demonstrate how photothermal microscopy encodes different wavelength-dependent temperature profiles in the asymmetry of the photothermal image point spread function. These asymmetries are interpreted through companion numerical simulations to reveal how thermal gradients within the trimer can be controlled by exciting its hybridized plasmon modes. We also find that plasmon modes that are optically dark can be excited by focused laser beam illumination, providing another route to modify thermal profiles beyond wide-field illumination. Taken together these findings demonstrate an all-optical thermometry technique to actively create and measure nanoscale thermal gradients below the diffraction limit.The development of selective catalytic reactions that utilize easily available reagents for the efficient synthesis of alcohols is a long-standing goal of chemical research. Here an intriguing strategy for the chemodivergent copper-catalyzed hydroxymethylation of alkynes with formic acid and hydrosilane has been developed. By simply tuning the amount of formic acid and reaction temperature, distinct one-carbon-extended primary alcohols, that is, allylic alcohols and β-branched alkyl alcohols, were produced with high levels of Z/E-, regio-, and enantioselectivity.Forming olivine-structured Li(Mn,Fe)PO4 solid solution is theoretically a feasible way to improve the energy density of the solid solutions for lithium ion batteries. However, the Jahn-Teller active Mn3+ in the solid solution restricts their energy density and rate performance. Here, as demonstrated by operando X-ray diffraction, we show that equimolar LiMn0.5Fe0.5PO4 solid solution nanocrystals undergo a single-phase transition during the whole (de)lithiation process, with a feature of zero lithium miscibility gap, which endows the nanocrystals with excellent electrochemical properties. Specifically, the energy density of LiMn0.5Fe0.5PO4 reaches 625 Wh kg-1, which is 16% higher than that of LiFePO4. Moreover, the high-performance LiMn0.5Fe0.5PO4 nanocrystals are prepared by a microwave-assisted hydrothermal synthesis in pure water.The transition-metal-catalyzed allylation reaction is an efficient strategy for the construction of new carbon-carbon bonds alongside allyl or homoallylic functionalization. Herein we describe a Ni-catalyzed reductive allylation of α-chloroboronates to efficiently render the corresponding homoallylic boronates, which could be readily converted into valuable homoallylic alcohols or amines or 1,4-diboronates. This reaction features a broad substrate scope with good functional group compatibility that is complementary to the existing methods for the preparation of homoallylic boronates.Lead halide perovskite nanocrystals, whether formed by their own nucleation and growth or by ion diffusion into the lattice of others, are still under investigation. Moreover, beyond isotropic nanocrystals, fabricating anisotropic perovskite nanocrystals by design has remained difficult. Exploring the lattice of orthorhombic-phase Cs2ZnBr4 with the complete replacement of Zn tetrahedra by Pb octahedra, dimension-tunable anisotropic nanocrystals of CsPbBr3 are reported. This B-site ion introduction led to CsPbBr3 nanorods having [100] as major axis, in contrast with all reports on rods/wires where the lengths were along the [001] direction. This was possible by using derivatives of α-bromo ketones, which helped in tuning the shape of Cs2ZnBr4 and also the facets of transformed CsPbBr3. While similar experiments are extended to orthorhombic Cs2HgBr4, standard nanorods with [001] as the major axis were observed. From these results, it is further concluded that anisotropic perovskite nanocrystals might not follow any specific rules for directional growth and instead might depend on the structure of the parent lattice.Understanding the detailed process of spontaneous formation of intrinsic defects and their ability to tune the electronic structures in functional materials has become a key prerequisite for their technological applications. Here, by using in situ scanning tunneling microscopy, we report the observation of one-dimensional Frenkel chain defects on the cleaved CsBi4Te6 surface due to the migration of Te atoms for the first time. Further scanning tunneling spectroscopy measurements clearly revealed a self-electron doping effect of the Frenkel chain defects, which could directly affect their thermoelectric and superconducting properties. The unique one-dimensional Frenkel tellurium atomic chain defect and its doping effect on the electronic structure observed here not only shed light on tuning the electric properties of a series of tellurides but also possess profound implications for enriching the microscopic details of defect chemistry and materials science.Inverse Kohn-Sham (iKS) methods are needed to fully understand the one-to-one mapping between densities and potentials on which density functional theory is based. They can contribute to the construction of empirical exchange-correlation functionals and to the development of techniques for density-based embedding. Unlike the forward Kohn-Sham problems, numerical iKS problems are ill-posed and can be unstable. We discuss some of the fundamental and practical difficulties of iKS problems with constrained-optimization methods on finite basis sets. Various factors that affect the performance are systematically compared and discussed, both analytically and numerically, with a focus on two of the most practical methods the Wu-Yang method (WY) and the partial differential equation constrained optimization (PDE-CO). Our analysis of the WY and PDE-CO highlights the limitation of finite basis sets. We introduce new ideas to make iKS problems more tractable, provide an overall strategy for performing numerical density-to-potential inversions, and discuss challenges and future directions.Chalcogenide perovskites have emerged as lead-free, stable photovoltaic materials, having promising optoelectronic properties. However, a detailed theoretical study on excitonic properties is rather demanding task due to the huge computational cost and, therefore, is hitherto unknown. Here, we report the excitonic properties of chalcogenide perovskites AZrS3 (A = Ca, Sr, Ba) using state-of-the-art hybrid density functional theory and many-body perturbation theory (within the framework of GW and BSE). We find the exciton binding energy (EB) is larger than that of conventional halide perovskites. We also observe, by computing the electron-phonon coupling parameters, a more stable charge-separated polaronic state as compared to that of the bound exciton. The ionic contribution to dielectric screening is found to be negligible in this class of materials. On the basis of the direct band gap and the absorption coefficient, the estimated spectroscopic limited maximum efficiency is quite good when these materials are considered as promising environmentally friendly perovskites suitable for photovoltaics.The real-time application of piezoelectric nanogenerators (PNGs) under a harsh environment remains a challenge due to lower output performance and poor durability. Thus, the development of flexible, sensitive, and stable PNGs became a topic of interest to capture different human motions including gesture monitoring to speech recognition. Herein, a scalable approach is adapted where naphthylamine bridging a [Cd(II)-μ-I4] two-dimensional (2D) metal-organic framework (MOF)-reinforced poly(vinylidene fluoride) (PVDF) composite nanofibers mat is prepared to fabricate a flexible and sensitive composite piezoelectric nanogenerator (C-PNG). The needle-shaped MOF was successfully synthesized by the layering and diffusion of two different solutions. The incorporation of single-crystalline 2D MOF ensures a large content of electroactive phases (98%) with a resultant high-magnitude piezoelectric coefficient of 41 pC/N in a composite nanofibers mat due to the interfacial specific interaction with -CH2-/-CF2- dipoles of PV and a self-powered acoustic sensor to power up electronic gadgets as well as low-frequency noise detection.Rate and product control are crucial for a chemical process and are useful in a wide range of applications. Traditionally, thermodynamic parameters, such as temperature or pressure, have been used to control the chemical reactions. Selleck FIIN-2 Here, by using the fabrication of a hollow MnxFeyO4 nanostructure as a model system, we report an experimental tuning of both chemical reaction rate and product by a high magnetic field. A 12 times magneto-acceleration of the galvanic replacement (GR) reaction was observed. Moreover, it is first demonstrated that a magnetic field can unravel and accelerate the hidden Kirkendall effect (KE) in addition to the pristine GR reaction. With coaction of magneto-tuned KE and GR, not only the rate but also the composition as well as magnetic property of the products could be modulated. These observations suggest that not only is a magnetic field a variable parameter that cannot be ignored, but also it can effectively control both rate and product in a chemical reaction, which provides a new route for chemical process controlling and shape/composition designing in material synthesis.
My Website: https://www.selleckchem.com/products/fiin-2.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team