Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The measurement of phenylalanine in biological fluids for the diagnosis of phenylketonuria (PKU) in newborns and the monitoring/therapeutic drug monitoring of individuals with PKU are especially important. Owing to the importance of PKU monitoring in clinical medicine, a new fluorometric method was developed for the determination of L-phenylalanine in serum samples. This method is based on the relationship between phenylalanine ammonia-lyase (PAL) and o-phthalaldehyde (OPA). PAL catalyzes the conversion of phenylalanine to ammonia and trans-cinnamic acid. find more The formed ammonia reacts with OPA in the presence of sodium sulfite, giving a fluorescent product. The presence of sulfide in an alkaline environment prevents OPA from reacting with other amino acids while allowing it to react only with ammonia. Method characterization and optimization studies, such as the effects of pH, temperature, and interferents, were carried out. The amount of L-phenylalanine in a human serum sample was successfully determined by using the fluorescence emission intensity of the fluorescent product formed as a result of the reaction between OPA and ammonia. The linear range of the method is between 10 μM and 10 mM. The obtained result showed good agreement with the results of the biochemistry analysis laboratory. Recoveries of 95.41% and 73.39% were obtained for phenylalanine and ammonia, respectively. This PAL-OPA-based fluorometric method for phenylalanine is practical, easy to operate, low cost, highly sensitive, and selective and can also be used for the simultaneous determination of ammonia in human serum samples.Macroalgae are an important source of food, fertilizer, hydrocolloids, and healthful bioactive components. Macroalgae are also being considered sources of biofuels, which require minimal demands for arable land, fresh water, or fertilizers. In this study, we explored the possibility of developing a red seaweed biorefinery process to extract carrageenan while producing chemical or biofuel co-products derived from the carrageenan extraction wastes. A common approach to processing organic wastes is to generate biogas; however, in this study, we targeted a potentially higher value option by applying acidogenic digestion to convert extraction wastes to carboxylic acids and derived compounds. Using an open culture of microorganisms, wastes from a carrageenan extraction plant were converted to mixed carboxylic acids, which were then neutralized and thermally decomposed to a variety of ketones. Batch digestions of the wastes were carried out at temperatures of 35 °C and 55 °C. link2 Either calcium carbonate or ammonium bicarbonate was used as buffer. A solid-liquid counter-current percolation fermentation was operated in four stages at 35 °C. Digestion produced carboxylic acids ranging in chain length from one to seven carbons. The mesophilic temperature gave higher carboxylic acid yield and longer chain acids, with the highest acid titer reaching 18 g L-1. Thermal decomposition of carboxylate salts produced a mixture of ketones which contained acetone, 3-pentanone, 2-hexanone, 2-heptanone, 3-heptanone, and 4-octanone as major products. These ketones could be sold as chemicals or hydrogenated to form corresponding chain length secondary alcohols which deliver higher energy density than ethanol.To develop an efficient photofermentative process capable of higher rate biohydrogen production using carbon components of lignocellulosic hydrolysate, a desired carbon substrate by mixing xylose with glucose was formulated. Effects of crucial process parameters affecting cellular biochemical reaction of hydrogen by photosynthetic bacteria (PSB), i.e., variation in initial concentration of total carbon, glucose content in initial carbon substrate, and light intensity, were experimentally investigated using response surface methodology (RSM) with a Box-Behnken design (BBD). Hydrogen production rate (HPR) in the maximum value of 30.6 mL h-1 L-1 was attained under conditions of 39 mM initial concentration of total carbon, 59% (mol/mol) glucose content in initial carbon substrate, and 12.6 W m-2 light intensity at light wavelength of 590 nm. Synergic effects of metabolizing such a well-formulated carbon substrate for sustaining the active microbial synthesis to sufficiently accumulate biomass in bioreactor, as well as stimulating enzyme activity of nitrogenase for the higher rate biohydrogen production, were attributed to this carbon substrate that can enable PSB to maintain the relatively consistent microenvironment in suitable culture pH condition during the optimized photofermentative process.Fungal endophytes are living inside plants without any harmful effects; the prospecting about them is increased day by day because they can produce bioactive compounds which can be used in different applications. Herein, the current study was aimed to isolate the endophytic fungi from the Ocimum basilicum plant as safe microorganisms and evaluate their biological activities. The results illustrated that three endophytic fungal strains were isolated and identified morphologically and genetically as Aspergillus nidulans, Aspergillus fumigatus, and Aspergillus flavus and deposited in gene bank under accession numbers MZ045561, MZ045562, and MZ045563 respectively. Moreover, cell-free filtrates of endophytic fungal strains were extracted using ethyl acetate, where these crude extracts exhibited promising antimicrobial activity against Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, Klebsiella pneumonia, and Candida albicans at a concentration of 1000 µg/mL. Furthermore, these endophytic strains exhibited a potential antioxidant activity where IC50 of the crude extract of A. nidulans, A. fumigatus, and A. flavus were (166.3, 68.4, and 347.1 µg/mL) and (151.2, 77.9, and 246.3 µg/mL) using DPPH and ABTS methods, respectively. Furthermore, the ethyl acetate crude extracts of these endophytic fungi did not exhibit any cytotoxic effect against Vero and Wi 38 normal cells. GC-MS analysis of the crude extract of A. nidulans, A. fumigatus, and A. flavus indicated the presence of 22, 22, and 20 active compounds, respectively. The major compounds in the fungal extracts are belonging to fatty acids, fatty acid esters, tetrahydrofurans, and sterols. In conclusion, the isolated endophytic A. nidulans, A. fumigatus, and A. flavus from Ocimum basilicum are promising sources for bioactive compounds.Disitamab vedotin (Aidixi®) is an antibody-drug conjugate comprising a monoclonal antibody against human epidermal growth factor receptor 2 (HER2) conjugated via a cleavable linker to the cytotoxic agent monomethyl auristatin E. Disitamab vedotin is being developed by RemeGen for the treatment of solid tumours, including gastric cancer; Seagen has the right to develop disitamab vedotin globally outside of RemeGen's territory. In June 2021, disitamab vedotin received its first Biologics License Application (BLA) approval in China for the treatment of patients with HER2-overexpressing (defined as IHC2+ or 3+) locally advanced or metastatic gastric cancer (including gastroesophageal junction adenocarcinoma) who have received at least two systemic chemotherapy regimens. Disitamab vedotin as monotherapy or combination therapy is also in clinical development for the treatment of other solid tumours globally, including urothelial cancer in China and the USA, and biliary tract cancer, non-small cell lung cancer and HER2-positive and HER2-low expressing breast cancer in China. This article summarizes the milestones in the development of disitamab vedotin leading to this first approval for locally advanced or metastatic gastric cancer.
Biologic treatments for psoriasis are commonly switched. Treatment persistence represents an important parameter related to long-term therapeutic performance. The objective of the study was to analyse the real-world persistence with biologics over time in the treatment of psoriasis.
A retrospective observational study of adults with psoriasis was conducted based on Swedish national registry data from 2010 to 2018. Patients included were treated with a biologic between 2010 and 2018. Treatment episodes were identified from the drug's date of dispensation recorded in the Prescribed Drug Register to the end of supply of the drug. Median persistence was estimated by Kaplan-Meier survival curves for patients who received adalimumab, etanercept, secukinumab, ustekinumab and ixekizumab. Descriptive analysis of change in persistence over time for 3-year running cohorts was also carried out.
A total of 2292 patients were analysed. Patients who received ustekinumab had the longest median persistence [49.3months, 95% confidence interval (CI) 38.0-59.1] and etanercept the shortest (16.3months, 95% CI 14.5-19.0). Median persistence was longer in biologic-naive than biologic-exposed patients. Persistence for ustekinumab decreased by almost 50% over the study period, from a median of 62.3 (95% CI 45.6-∞)months in 2010-2011 to 32.7 (21.2-49.3)months in 2014-2016.
Persistence with biologics was, on average, relatively low, given the chronic nature of psoriasis. Changes in persistence over time seemed to be attributable to changes in the therapeutic landscape, providing patients with more options to switch biologic treatments if their current management was considered suboptimal.
Persistence with biologics was, on average, relatively low, given the chronic nature of psoriasis. Changes in persistence over time seemed to be attributable to changes in the therapeutic landscape, providing patients with more options to switch biologic treatments if their current management was considered suboptimal.The Drosophila neuromuscular junction is an excellent model for neuroscience research. However, the distribution of neuromuscular junctions is very diffuse, and it is not easy to accurately locate during ultrathin sectioning, which seriously interferes with the ultrastructural analysis under electron microscopy that only has a small field of view. Here, we reported an efficient method for acquiring the ultrastructural picture of neuromuscular junctions in Drosophila larva under electron microscopy. link3 The procedure was as follows first, the larval sample of body wall muscle was placed between the metal mesh and was dehydrated with alcohol and infiltrated with epoxy resin to prevent the sample from curling or bending, after it was dissected and fixed into thin slices. Second, the sample was embedded in resin into a flat sheet to facilitate the positioning of the muscles. Third, carefully and gradually remove the excess resin and the cuticle of the larvae, cut off both ends of the special body segment, and trim the excess specific muscles according to the recommended ratio of trimming muscles, which would reduce the workload exponentially. At last, the trimmed sample were prepared into serial about 1000 ultrathin sections that was about total 80 microns thickness, and 30-40 sections were gathered into a grid to stain with lead citrate and uranyl acetate. This method could also be applied to the other small and thin samples such as the Drosophila embryo, ventral nerve cord and brain.
Homepage: https://www.selleckchem.com/products/beta-glycerophosphate-sodium-salt-hydrate.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team