NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Electrochemical carbon dioxide decrease in ionic beverages with high pressure.
We derive finite-length bounds for two problems with Markov chains source coding with side-information where the source and side-information are a joint Markov chain and channel coding for channels with Markovian conditional additive noise. For this purpose, we point out two important aspects of finite-length analysis that must be argued when finite-length bounds are proposed. The first is the asymptotic tightness, and the other is the efficient computability of the bound. Then, we derive finite-length upper and lower bounds for the coding length in both settings such that their computational complexity is low. We argue the first of the above-mentioned aspects by deriving the large deviation bounds, the moderate deviation bounds, and second-order bounds for these two topics and show that these finite-length bounds achieve the asymptotic optimality in these senses. Several kinds of information measures for transition matrices are introduced for the purpose of this discussion.We study the transport properties of multi-terminal Hermitian structures within the non-equilibrium Green's function formalism in a tight-binding approximation. We show that non-Hermitian Hamiltonians naturally appear in the description of coherent tunneling and are indispensable for the derivation of a general compact expression for the lead-to-lead transmission coefficients of an arbitrary multi-terminal system. This expression can be easily analyzed, and a robust set of conditions for finding zero and unity transmissions (even in the presence of extra electrodes) can be formulated. Using the proposed formalism, a detailed comparison between three- and two-terminal systems is performed, and it is shown, in particular, that transmission at bound states in the continuum does not change with the third electrode insertion. The main conclusions are illustratively exemplified by some three-terminal toy models. For instance, the influence of the tunneling coupling to the gate electrode is discussed for a model of quantum interference transistor. The results of this paper will be of high interest, in particular, within the field of quantum design of molecular electronic devices.For the modeling of categorical time series, both nominal or ordinal time series, an extension of the basic discrete autoregressive moving-average (ARMA) models is proposed. It uses an observation-driven regime-switching mechanism, leading to the family of RS-DARMA models. After having discussed the stochastic properties of RS-DARMA models in general, we focus on the particular case of the first-order RS-DAR model. This RS-DAR ( 1 ) model constitutes a parsimoniously parameterized type of Markov chain, which has an easy-to-interpret data-generating mechanism and may also handle negative forms of serial dependence. Approaches for model fitting are elaborated on, and they are illustrated by two real-data examples the modeling of a nominal sequence from biology, and of an ordinal time series regarding cloudiness. PLX5622 in vivo For future research, one might use the RS-DAR ( 1 ) model for constructing parsimonious advanced models, and one might adapt techniques for smoother regime transitions.At the classical limit, a multi-stage, endoreversible Carnot cycle model of quantum heat engine (QHE) working with non-interacting harmonic oscillators systems is established in this paper. A simplified combined cycle, where all sub-cycles work at maximum power output (MPO), is analyzed under two types of combined form constraint of cycle period or constraint of interstage heat current. The expressions of power and the corresponding efficiency under two types of combined constrains are derived. A general combined cycle, in which all sub-cycles run at arbitrary state, is further investigated under two types of combined constrains. By introducing the Lagrangian function, the MPO of two-stage combined QHE with different intermediate temperatures is obtained, utilizing numerical calculation. The results show that, for the simplified combined cycle, the total power decreases and heat exchange from hot reservoir increases under two types of constrains with the increasing number (N) of stages. The efficiency of the combined cycle decreases under the constraints of the cycle period, but keeps constant under the constraint of interstage heat current. For the general combined cycle, three operating modes, including single heat engine mode at low "temperature" (SM1), double heat engine mode (DM) and single heat engine mode at high "temperature" (SM2), appear as intermediate temperature varies. For the constraint of cycle period, the MPO is obtained at the junction of DM mode and SM2 mode. For the constraint of interstage heat current, the MPO keeps constant during DM mode, in which the two sub-cycles compensate each other.This paper develops a new statistical inference theory for the precision matrix of high-frequency data in a high-dimensional setting. The focus is not only on point estimation but also on interval estimation and hypothesis testing for entries of the precision matrix. To accomplish this purpose, we establish an abstract asymptotic theory for the weighted graphical Lasso and its de-biased version without specifying the form of the initial covariance estimator. We also extend the scope of the theory to the case that a known factor structure is present in the data. The developed theory is applied to the concrete situation where we can use the realized covariance matrix as the initial covariance estimator, and we obtain a feasible asymptotic distribution theory to construct (simultaneous) confidence intervals and (multiple) testing procedures for entries of the precision matrix.The Black-Scholes partial differential equation (PDE) from mathematical finance has been analysed extensively and it is well known that the equation can be reduced to a heat equation on Euclidean space by a logarithmic transformation of variables. However, an alternative interpretation is proposed in this paper by reframing the PDE as evolving on a Lie group. This equation can be transformed into a diffusion process and solved using mean and covariance propagation techniques developed previously in the context of solving Fokker-Planck equations on Lie groups. An extension of the Black-Scholes theory with coupled asset dynamics produces a diffusion equation on the affine group, which is not a unimodular group. In this paper, we show that the cotangent bundle of a Lie group endowed with a semidirect product group operation, constructed in this paper for the case of groups with trivial centers, is always unimodular and considering PDEs as diffusion processes on the unimodular cotangent bundle group allows a direct application of previously developed mean and covariance propagation techniques, thereby offering an alternative means of solution of the PDEs.
Here's my website: https://www.selleckchem.com/products/plx5622.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.