Notes
Notes - notes.io |
The Ala330Val substitution does not alter structure or biophysical properties of PGM5 but, due to its surface-exposed location, could affect interactions with protein-binding partners.Estimating accurate positions of multiple pedestrians is a critical task in robotics and autonomous cars. We propose a tracker based on typical human motion patterns to track multiple pedestrians. This paper assumes that the legs' reflection and extension angles are approximately changing periodically during human motion. A Fourier series is fitted in order to describe the moving, such as describing the position and velocity of the hip, knee, and ankle. Our tracker receives the position of the ankle, knee, and hip as measurements. Selleckchem Wnt inhibitor As a proof of concept, we compare our tracker with state-of-the-art methods. The proposed models have been validated by experimental data, the Human Gait Database (HuGaDB), and the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) tracking benchmark. The results indicate that our tracker is able to estimate the reflection and extension angles with a precision of 90.97%. Moreover, the comparison shows that the tracking precision increases up to 1.3% with the proposed tracker when compared to a constant velocity based tracker.Natural products have a wide range of applications with a profound impact in the medical and healthcare fields [...].The extraction of permanent structures (such as walls, floors, and ceilings) is an important step in the reconstruction of building interiors from point clouds. These permanent structures are, in general, assumed to be planar. However, point clouds from building interiors often also contain clutter with planar surfaces such as furniture, cabinets, etc. Hence, not all planar surfaces that are extracted belong to permanent structures. This is undesirable as it can result in geometric errors in the reconstruction. Therefore, it is important that reconstruction methods can correctly detect and extract all permanent structures even in the presence of such clutter. We propose to perform semantic scene completion using deep learning, prior to the extraction of permanent structures to improve the reconstruction results. For this, we started from the ScanComplete network proposed by Dai et al. We adapted the network to use a different input representation to eliminate the need for scanning trajectory information as this is not always available. Furthermore, we optimized the architecture to make inference and training significantly faster. To further improve the results of the network, we created a more realistic dataset based on real-life scans from building interiors. The experimental results show that our approach significantly improves the extraction of the permanent structures from both synthetically generated as well as real-life point clouds, thereby improving the overall reconstruction results.The paper presents the results of the research into the impact of impregnation of wood on its bending strength and elastic modulus under normal conditions and after thermal treatment and investigates its structural reliability. Pinewood, non-impregnated and pressure impregnated with a solution with SiO2 nanoparticles, was used in this research. The use of nanoparticles decreases the flammability of timber among others. Some of the tested samples were treated at 250 °C. This temperature corresponds to the boundary of the self-ignition of wood. This elevated temperature was assumed to be reached by a given speed of heating within 10 min, and then the samples were stored in these conditions for 10 and 20 min. The tests demonstrate that the bending strength of the impregnated wood was slightly improved, the impregnation did not impact the elastic modulus of the material in all such conditions, and the residual strength decreased less for the wood impregnated after being exposed to the elevated temperatures. The reliability analysis proves a positive effect of impregnation with a solution with SiO2 on the durability of wood, both after being exposed to normal and elevated temperatures. The distribution of the failure rates indicates a more intensive degradation of non-impregnated wood. The distribution of the survival function demonstrates a more probable non-destruction of impregnated wood after elevated temperature conditions.The recent explosion of wearable electronics has led to widespread interest in harvesting human movement energy, particularly during walking, for clinical and health applications. However, the amount of energy available to harvest and the required metabolic rate for wearable energy harvesting varies across subjects. In this paper, we utilize custom energy harvesting sliding shoes to develop and evaluate multivariate linear regression models to predict metabolic rate and energy harvesting rate during overground walking outside of the lab. Subjects performed 200 m self-selected normal and fast walking trials on flat ground with custom sliding shoes. Metabolic rate was measured with a portable breathing analysis system and energy harvesting rate was measured directly from the generator on the custom sliding shoes. Model performance was determined by comparing the difference between actual and predicted metabolic and energy harvesting rates. Overall, predictive modeling closely matched the actual values, and there was no statistical difference between actual and predicted average metabolic rate or between actual and predicted average energy harvesting rate. Energy harvesting sliding shoes could potentially be used for a variety of wearable devices to reduce onboard energy storage, and these findings could serve to inform expected energy harvesting rates and associated required metabolic cost for a diverse array of medical and health applications.In the last three decades, the development of new kinds of textiles, so-called smart and interactive textiles, has continued unabated. Smart textile materials and their applications are set to drastically boom as the demand for these textiles has been increasing by the emergence of new fibers, new fabrics, and innovative processing technologies. Moreover, people are eagerly demanding washable, flexible, lightweight, and robust e-textiles. These features depend on the properties of the starting material, the post-treatment, and the integration techniques. In this work, a comprehensive review has been conducted on the integration techniques of conductive materials in and onto a textile structure. The review showed that an e-textile can be developed by applying a conductive component on the surface of a textile substrate via plating, printing, coating, and other surface techniques, or by producing a textile substrate from metals and inherently conductive polymers via the creation of fibers and construction of yarns and fabrics with these.
Website: https://www.selleckchem.com/Wnt.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team