Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
This review provides an insight into smokeless tobacco product-associated bacteriome and their potential in the progression of oral cancer. In the future, this will guide in the evolution of prevention and treatment strategies against smokeless tobacco products-induced oral cancer. Besides, it will assist the government organizations for better management and cessation policy building for the worldwide problem of smokeless tobacco addiction.Periodontal disease, an inflammatory bone disease of the oral cavity, affects more than 50% of the United States population over the age of 30. The Gram-negative, anaerobic bacterium Porphyromonas gingivalis, the etiological agent of periodontal disease, is known to induce dysbiosis of the oral microbiome while promoting inflammatory bone loss. We have recently reported that P. gingivalis can also alter the gut microbiota of mice prone to develop inflammatory atherosclerosis. However, it is still unknown whether P. gingivalis induces similar changes to the gut microbiome as it does to oral microbiome. In this study, we demonstrate that P. gingivalis infection increases the diversity of the oral microbiome, allowing for colonization of potentially opportunistic species in the oral microbiome and overgrowth of commensal species in both the oral and gut microbiomes. Since periodontal disease treatment in humans typically involves antibiotic treatment, we also examined the combined effect of P. gingivalis infection on mice pretreated with oral antibiotics. By correlating the oral and cecal microbiota of P. gingivalis-infected mice fed a normal chow diet, we identified blooms of the Gram-negative genera Barnesiella and Bacteroides and imbalances of mucin-degrading bacteria. These disrupted community structures were predicted to have increased detrimental functional capacities including increased flavonoid degradation and l-histidine fermentation. Though antibiotic pretreatment (without P. gingivlais) had a dominant impact on the cecal microbiome, P. gingivalis infection of mice with or without antibiotic pretreatment increased the abundance of the phylum Firmicutes and the Porphyromonadaceae family in the cecum. Vorinostat Collectively, our study demonstrates that P. gingivalis oral infection disrupted the oral and cecal microbiomes of otherwise unperturbed mice, altering their community membership and functional potential.
To provide a scoping review of the literature by assessing all the English-language papers that investigated the relationship between sleep bruxism (SB) and temporomandibular disorders (TMDs).
A search was performed in the National Library of Medicine (PubMed) and Scopus databases, in order to identify all the articles published assessing the relationship between SB and TMDs, by several different approaches. The selected articles were then structurally read and summarized in PICO tables. The articles were selected independently by the two authors.
Out of 185 references that were initially retrieved, 47 articles met the inclusion criteria and were thus included in the review. The studies were divided into four categories based on the type of SB assessment 1. questionnaire/self-report (n=26), 2. clinical examination (n=7), 3. electromyography (EMG) (n=5), and 4. polysomnography (PSG) (n=9).
Studies based on questionnaire/self-report SB featured a low specificity for SB assessment, and in general they fofirmed the conclusions of a previous review by Manfredini & Lobbezoo, suggesting that literature findings on the relationship between SB and TMDs are dependent on the assessment strategies that are adopted for SB. Future studies should consider SB as a multifaceted motor behavior that must be evaluated in its continuum spectrum, rather than using a simplified dichotomous approach of presence/absence.
To evaluate the antibacterial and mineralization properties of a dental adhesive containing Ag/polydopamine-modified HA (HA, hydroxyapatite) fillers.
First, an HA-polydopamine-Ag-polydopamine (HA-PDA-Ag-PDA) filler was prepared and characterized using SEM, TEM, XPS, XRD and FTIR. Then, the HA-PDA-Ag-PDA filler was mixed into an adhesive at different mass fractions (0 wt%, 0.5 wt%, 1 wt%, 2 wt%) to prepare a functional adhesive. Antibacterial and mineralization tests were carried out, and the cytotoxicity of the functional adhesive against L929 fibroblasts was also examined.
The SEM, TEM, XPS, XRD and FTIR characterizations confirmed the successful preparation of the HA-PDA-Ag filler. The 1 wt% and 2 wt% functional adhesives showed the strongest bacterial inhibition effect among all the samples (p < 0.05). Obvious apatite crystals were observed in the SEM micrograph of the surface of the functional adhesive sample after immersion in artificial saliva for predetermined times (1 d, 7 d, 14 d and 28 d). se restoration longevity.Glioma is the most common type of Central Nervous System (CNS) neoplasia and it arises from glial cells. As glial cells are formed by different types of cells, glioma can be classified according to the cells that originate it or the malignancy grade. Glioblastoma multiforme is the most common and aggressive glioma. The high lethality of this tumor is related to the difficulty in performing surgical removal, chemotherapy, and radiotherapy in the CNS. To improve glioma treatment, a wide range of chemotherapeutics have been encapsulated in nanosystems to increase their ability to overcome the blood-brain barrier (BBB) and specifically reach the tumoral cells, reducing side effects and improving drug concentration in the tumor microenvironment. Several studies have investigated nanosystems covered with targeting ligands (e.g., proteins, peptides, aptamers, folate, and glucose) to increase the ability of drugs to cross the BBB and enhance their specificity to glioma through specific recognition by receptors on BBB and glioma cells. This review addresses the main targeting ligands used in nanosystems to overcome the BBB and promote the active targeting of drugs for glioma. Furthermore, the advantages of using these molecules in glioma treatment are discussed.Impaired wound healing in patients receiving glucocorticoid therapy is a serious clinical concern mineralocorticoid receptor (MR) antagonists can counter glucocorticoid-induced off-target activation of MR receptors. The aim of this study was to investigate the cutaneous delivery of the potent MR antagonist, spironolactone (SPL), from polymeric micelle nanocarriers, prepared using a biodegradable copolymer, methoxy-poly(ethylene glycol)-di-hexyl-substituted-poly(lactic acid). Immunofluorescent labelling of the MR showed that it was principally located in the pilosebaceous unit (PSU), justifying the study rationale since polymeric micelles accumulate preferentially in appendageal structures. Cutaneous biodistribution studies under infinite and finite dose conditions, demonstrated delivery of pharmacologically relevant amounts of SPL to the epidermis and upper dermis. Preferential PSU targeting was confirmed by comparing amounts of SPL in PSU-containing and PSU-free skin biopsies SPL nanomicelles showed 5-fold higher delivery of SPL in the PSU-containing biopsies, 0.
Homepage: https://www.selleckchem.com/products/Vorinostat-saha.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team