Notes
Notes - notes.io |
The generalized Yeh's matrix algebra to bianisotropic media has been used for the calculation of the eigenmodes propagation in chiral materials with reduced symmetry. Based on the applied method, the authors have proposed approximated analytical form of the Mueller matrix representing optically active waveplate and biplate and provided discussion on the analytical and numerical limits of the method.We present tunable waveguide-based optical parametric amplification by four-wave mixing (FWM) in silicon nitride waveguides, with the potential to be set up as an all-integrated device, for narrowband coherent anti-Stokes Raman scattering (CARS) imaging. Signal and idler pulses are generated via FWM with only 3 nJ pump pulse energy and stimulated by using only 4 mW of a continuous-wave seed source, resulting in a 35 dB enhancement of the idler spectral power density in comparison to spontaneous FWM. By using waveguides with different widths and tuning the wavelength of the signal wave seed, idler wavelengths covering the spectral region from 1.1 µm up to 1.6 µm can be generated. The versatility of the chip-based FWM light source is demonstrated by acquiring CARS images.This study proposes a digital implementation of the conventional Mirage, which uses two parabolic mirrors to produce 360-degree three-dimensional (3D) images of real objects placed inside of it. The two mirrors are replaced with multiple light field displays to generate rays emitted from 3D objects in 360 degrees. We propose two techniques for eliminating repeated 3D images produced by the multiple displays, that is, non-tracking and tracking techniques. The former supports multiple viewers, although the 3D image size is limited. The latter can produce large 3D images, although the number of viewers is limited. The display system of the lower half of the light field Mirage was constructed by using four light field displays to verify the proposed techniques.We present the spatial and temporal characterization of the copper (Cu) plasma produced by the femtosecond laser filaments. The filaments of various lengths and intensities were generated with the aid of three different focusing lenses. Further, the filamentation induced breakdown spectroscopy (FIBS) measurements were carried out for each filament at three different positions along the length of the filament. The filaments were spatially characterized by estimating the plasma temperature and electron density. Our investigation has demonstrated that the centre of the filament is the best to obtain a maximum signal. Both the spectral line intensity and their persistence time are highest for the center of the filament. The enhanced persistence and the scalability of the spectral line intensity tested across different focusing geometries can boost the application of this technique in various fields.We develop a transient photoinduced Kerr rotation spectroscopy technique using a heterodyne detection scheme to study spin dynamics of microscopic quantum states in solids, such as single quantum dots and spin helixes. The use of the heterodyne beat note signal generated by the interference of the frequency-shifted probe and reference pulses realizes the Kerr rotation measurements in combination with micro-spectroscopy, even when the probe pulse propagates collinearly with the strong pump pulse, which resonantly excites the probing state. In addition, the interference gives an optical amplification of the Kerr signal, which provides a clear observation of the photoinduced spin dynamics by the weak probe intensity. Here, we present results of Kerr rotation measurements for a single quantum dot exciton, which shows a maximum rotation angle of few µrad.In this work, a novel all-dielectric metasurface made of arrayed circular slots etched in a silicon layer is proposed and theoretically investigated. The structure is designed to support both Mie-type multipolar resonances and symmetry-protected bound states in the continuum (BIC). Specifically, the metasurface consists of interrupted circular slots, following the paradigm of complementary split-ring resonators. This configuration allows both silicon-on-glass and free-standing metasurfaces and the arc length of the split-rings provides an extra tuning parameter. The nature of both BIC and non-BIC resonances supported by the metasurface is investigated by employing the Cartesian multipole decomposition technique. Thanks to the non-radiating nature of the quasi-BIC resonance, extremely high Q-factor responses are calculated, both by fitting the simulated transmittance spectra to an extended Fano model and by an eigenfrequency analysis. Furthermore, the effect of optical losses in silicon on quenching the achievable Q-factor values is discussed. The metasurface features a simple bulk geometry and sub-wavelength dimensions. This novel device, its high Q-factors, and strong energy confinement open new avenues of research on light-matter interactions in view of new applications in non-linear devices, biological sensors, and optical communications.The external bandwidth of germanium waveguide photodetectors (PDs) decreases with the device length due to the load and parasitic effects even if the internal one is less affected. Shortening PDs raises the external bandwidth but lowers the responsivity, introducing a trade-off between the two figures of merits. selleck inhibitor Here, we present a scheme of waveguide PDs based on total internal reflections of corner reflectors. The reflector can be easily fabricated with the standard photolithography at the end of PDs to efficiently reflect optical power back to germanium for additional absorption, allowing for further size reduction. The structure may render the optimization of PDs more flexible.The rapid oscillation of galvanometric resonant optical scanners introduces linear astigmatism that degrades transverse resolution, and in confocal systems, also reduces signal [V. Akondi et al., Optica 7, 1506, 2020]. Here, we demonstrate correction of this aberration by tilting reflective or refractive optical elements for a single vergence or a vergence range, with and without the use of an adaptive wavefront corrector such as a deformable mirror. The approach, based on nodal aberration theory, can generate any desired third order aberration that results from tilting or decentering optical surfaces.
Website: https://www.selleckchem.com/products/nec-1s-7-cl-o-nec1.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team