Notes
![]() ![]() Notes - notes.io |
In addition, to solve the discrete optimization problem, we further propose an efficient discrete optimization algorithm with a well-designed group updating scheme, making its computational complexity linear to the size of the training set. In light of this, it is more efficient and scalable to large-scale datasets. Extensive experiments on three benchmark datasets demonstrate that FCMH outperforms some state-of-the-art cross-modal hashing approaches in terms of both retrieval accuracy and learning efficiency.In this article, the problem of distributed synchronization of networked systems with actuator bias faults is investigated. To effectively use the limited network bandwidth and avoid the requirement of global information, a novel adaptive event-triggered state feedback controller and a dynamic triggering law are designed jointly by employing a projection operator approach. The proposed synchronization scheme is different from existing ones that have focused on designing controllers and triggering laws independently. Besides, our scheme is extended to design an observer-based distributed adaptive event-triggered controller and corresponding dynamic triggering law when the system states are unmeasurable. Theoretical analysis shows that under the two different distributed event-triggered synchronization schemes, the following three results can be obtained 1) fully distributed synchronization can be achieved without knowing global information associated with the underlying communication topology and node's scale; 2) continuous communication among adjacent nodes can be avoided for both designed controllers and dynamic triggering laws; and 3) exclusion of Zeno phenomenon is shown by contradiction. Finally, the effectiveness of the proposed algorithms is verified through three numerical examples.Outlier detection is one of the most important research directions in data mining. However, most of the current research focuses on outlier detection for categorical or numerical attribute data. There are few studies on the outlier detection of mixed attribute data. In this article, we introduce fuzzy rough sets (FRSs) to deal with the problem of outlier detection in mixed attribute data. Since the outlier detection model of the classical rough set is only applicable to the categorical attribute data, we use FRS to generalize the outlier detection model and construct a generalized outlier detection model based on fuzzy rough granules. First, the granule outlier degree (GOD) is defined to characterize the outlier degree of fuzzy rough granules by employing the fuzzy approximation accuracy. Then, the outlier factor based on fuzzy rough granules is constructed by integrating the GOD and the corresponding weights to characterize the outlier degree of objects. Furthermore, the corresponding fuzzy rough granules-based outlier detection (FRGOD) algorithm is designed. The effectiveness of the FRGOD algorithm is evaluated through experiments on 16 real-world datasets. The experimental results show that the algorithm is more flexible for detecting outliers and is suitable for numerical, categorical, and mixed attribute data.This article aims to establish an appointed-time observer-based framework to efficiently address the resilient consensus control problem of linear multiagent systems with malicious attacks. The local appointed-time state observer is skillfully designed for each agent to estimate the agent's actual state value at the appointed time, even in the presence of unknown malicious attacks. Based on the state estimation, a new kind of resilient control strategy is proposed, where a virtual system is constructed for each agent to generate an ideal state value such that the consensus of normal agents can be achieved with the exchange of ideal state values among neighboring agents. To specify the consensus trajectory while achieving resilient consensus, the leader-follower resilient consensus is further studied, where the leader is assumed to be a trusted agent with a bounded control input. Compared with the existing results on the resilient consensus, the proposed distributed resilient controller design reduces the requirement on communication connectivity significantly, where the allowable communication graph is only assumed to contain a directed spanning tree. To verify the theoretical analysis, numerical simulations are finally provided.This article is concerned with the energy-to-peak state estimation problem for a class of linear discrete-time systems with energy-bounded noises and intermittent measurement outliers (IMOs). In order to capture the intermittent nature, two sequences of step functions are introduced to model the occurrence of the IMOs. Furthermore, two special indices (i.e., minimum and maximum interval lengths) are adopted to describe the ``occurrence frequency'' of IMOs. Different from the considered energy-bounded noises, the outliers are assumed to have their magnitudes larger than certain thresholds. In order to achieve a satisfactory performance constraint on the energy-to-peak state estimation under the addressed kind of measurement outliers, a novel parameter-dependent (PD) state estimation strategy is developed to guarantee that the measurements contaminated by outliers would be removed in the estimation process. The proposed PD state estimation method is essentially a two-step process, where the first step is to examine the appearing and disappearing moments for each IMO by using a dedicatedly constructed outlier detection scheme, and the second step is to implement the state estimation task according to the outlier detection results. Sufficient conditions are obtained to ensure the existence of the desired estimator, and the gain matrix of the desired estimator is then derived by solving a constrained optimization problem. JNK inhibitor datasheet Finally, a simulation example is presented to illustrate the effectiveness of our developed PD state estimation strategy.It has been proved that the determination of independent components (ICs) in the independent component analysis (ICA) can be attributed to calculating the eigenpairs of high-order statistical tensors of the data. However, previous works can only obtain approximate solutions, which may affect the accuracy of the ICs. In addition, the number of ICs would need to be set manually. Recently, an algorithm based on semidefinite programming (SDP) has been proposed, which utilizes the first-order gradient information of the Lagrangian function and can obtain all the accurate real eigenpairs. In this article, for the first time, we introduce this into the ICA field, which tends to further improve the accuracy of the ICs. Note that the number of eigenpairs of symmetric tensors is usually larger than the number of ICs, indicating that the results directly obtained by SDP are redundant. Thus, in practice, it is necessary to introduce second-order derivative information to identify local extremum solutions. Therefore, originating from the SDP method, we present a new modified version, called modified SDP (MSDP), which incorporates the concept of the projected Hessian matrix into SDP and, thus, can intellectually exclude redundant ICs and select true ICs.
Here's my website: https://www.selleckchem.com/JNK.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team