Notes
![]() ![]() Notes - notes.io |
All d0/d1/d2/d3-MRSF-Hyp derivatives were conveniently and specifically adsorbed by DMMIPs in magnetic dispersive solid phase extraction procedure before injection. Method validation results including linearity (0.2-100 ng mL-1), limits of detection and quantitation (0.05 and 0.2 ng mL-1), accuracy, precision, stability, matrix effect and derivatization efficiency were satisfactory. The analytical performances benefited from efficient integration of QSILD and specific DMMIPs extraction. The proposed strategy was successfully applied for Hyp determination in human serum of liver fibrosis patients and healthy controls, which was of great significance to early diagnosis.With the merits of non-destructive, high penetration ability and minimizing autofluorescence, near-infrared (NIR) fluorescent probes have attracted much attention. In this paper, a NIR emission fluorescent turn-on probe THQ-L for H2S was synthesized by the knoevenagel condensation between tetrahydroquinoxaline-6- formaldehyde derivative and 2-benzothiazoleacetonitrile. THQ-L can recognize H2S through tandem reaction triggered by HS- to construct 1,4-diethylpiperazine-modified iminocoumarin-benzothiazole, which produces a strong red fluorescent signal. THQ-L displayed an excellent selectivity toward H2S, a large stokes shift (126 nm), a high signal-to-noise ratio (200-fold), the detection limits of 38.3 nM in PBS (10 mM, pH 7.4, 30% THF). The application study indicates that THQ-L can sensitively detect H2S in red wine, natural waters, living cells and can be prepared for a test paper strip for the qualitative detection of H2S.Herein, a novel bimodal ratiometric probe for sensitive and selective detection of biothiols (including glutathione (GSH), cysteine (Cys) and homocysteine (Hcys)) was constructed, which was based on the redox reaction between manganese dioxide nanoflakes (MnO2 NFs) and rhodamine (RhB) and biothiols. When MnO2 NFs was added into RhB solution, RhB was oxidized to a series of derivatives, accompanying with the colorimetric color changing from purple to light pink and fluorescence changing from red to green. In the presence of GSH, Cys or Hcys, they could reduce MnO2 NFs to Mn2+, thereby preventing the following oxidization of RhB and the corresponding color and fluorescence changes. The absorption intensity ratio and fluorescence intensity ratio showed good linear relationships with the concentrations of biothiols. The colorimetric detection limits for GSH, Cys and Hcys were 0.057 μM, 0.140 μM and 0.087 μM, respectively. And the fluorescence detection limits were 0.177 μM, 0.282 μM and 0.161 μM. More importantly, this probe was successfully applied to monitor the concentration of GSH/Cys/Hcys in human serum samples, with satisfactory recovery. Thus, this MnO2 NFs-RhB platform can potentially be a candidate for the detection of biothiols.Neutrophil elastase (NE), a representative protease which is closely related to many diseases, acts an indispensable role in inflammatory diseases and clinical medicine. In this work, one activity-based non-peptide ratiometric fluorescent probe DCDF was designed with pentafluoropropionic anhydride as identification group. To our knowledge, this is the first probe capable of detecting NE in ratio. After the addition of the NE, the emission spectrum of DCDF has obvious bathochromic-shift phenomenon, and there is large Stokes shifts of ∼60 nm. Compared to only a few reported NE probes, DCDF is sensitive and selective and has very low detection limit (0-14 μg/mL, DL = 30.8 ng/mL). A possible response mechanism was proposed and verified by HPLC and HRMS spectra. What's more, DCDF is capable of endogenous recognition imaging in biological cells without interference from other enzymes under the ratio signal. A549 and HeLa cells were used for endogenous cell imaging experiments of NE and the feasibility of DCDF for the specific detection of NE in cells was proved. This experimental result makes probe DCDF a very promising tool for the clinical diagnosis and treatment of NE related diseases.Acid-alkaline balance plays a crucial role in all biological processes. Accordingly, monitoring pH changes will help us to understand the functional status of these physiological and pathological processes. Though fluorescent probes may be a useful tool for detecting pH changes, and there are many limitations to currently available probes, such as background interference, potential cytotoxicity, and poor cell permeability, which call for a solution urgently. In this work, a rhodamine-derived colorimetric and ratiometric sensor (Rh-HN) was fabricated for monitoring pH change via the mechanism of fluorescence resonance energy transfer (FRET). Rh-HN has been shown to possess several advantages over other probes, such as high sensitivity, outstanding permeability, and low toxicity. Besides, the fluorescence intensity ratio (F526/F592) of Rh-HN displays a pH-sensitive response from 2.0 to 7.5 (pKa = 5.05) and linear response from pH 3.8 to 6.4, which was desirable for mapping pH change in the biological systems. Besides, the results indicated that Rh-HN generated a pH-dependent response regulated by switchable forms between closed and opened spirolactam ring. Overall, Rh-HN has accomplished sensing and mapping of pH in living cells, bacteria, and zebrafish. Those results demonstrated that the great potential of Rh-HN in sensing and visualizing pH in the living biosystem.Coupling supercritical fluid extraction (SFE) on-line with supercritical fluid chromatography (SFC) - tandem mass spectrometry (MS/MS) provides a single platform for efficient extraction, separation, and detection in a chemical analysis. Epigenetic assay SFE-SFC-MS/MS requires consideration of many extraction and chromatographic variables to not only provide the most efficient extraction, but also to analytically transfer the extracted analytes to the column for separation. There is a fundamental lack of understanding of how the variables in SFE affect those in SFC. Typically, a univariate approach is taken in on-line SFE-SFC-MS/MS method development, but this provides little insight into the relative importance of variables and their potential interactions. Here, a multivariate approach was used to develop a better understanding of the synergistic relationship between the extraction and separation processes by focusing on the optimization of extraction parameters for target analytes with a wide range of physicochemical properties in matrices of variable retentivity.
My Website: https://www.selleckchem.com/pharmacological_epigenetics.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team