Notes
Notes - notes.io |
009). The hospital stay was significantly shorter in the study group compared to the control group (5 days vs 6 days, P less then 0.001). Selleck PF-6463922 The use of intraoperative wireless sonography (P = 0.01) had a significant association with massive intraoperative hemorrhage in multivariable analysis. CONCLUSION Our study is the first study to apply a wireless ultrasound sonography device in women with placenta previa during cesarean section to examine maternal morbidity. This latest wireless ultrasound sonography device is advantageous for uterine incision guidance in women with placenta previa and improves maternal morbidity by reducing intraoperative hemorrhage. © 2020 Japan Society of Obstetrics and Gynecology.Quantitative susceptibility mapping (QSM) has gained broad interest in the field by extracting bulk tissue magnetic susceptibility, predominantly determined by myelin, iron and calcium from magnetic resonance imaging (MRI) phase measurements in vivo. Thereby, QSM can reveal pathological changes of these key components in a variety of diseases. QSM requires multiple processing steps such as phase unwrapping, background field removal and field-to-source inversion. Current state-of-the-art techniques utilize iterative optimization procedures to solve the inversion and background field correction, which are computationally expensive and require a careful choice of regularization parameters. With the recent success of deep learning using convolutional neural networks for solving ill-posed reconstruction problems, the QSM community also adapted these techniques and demonstrated that the QSM processing steps can be solved by efficient feed forward multiplications not requiring either iterative optimization or the choice of regularization parameters. Here, we review the current status of deep learning-based approaches for processing QSM, highlighting limitations and potential pitfalls, and discuss the future directions the field may take to exploit the latest advances in deep learning for QSM. © 2020 John Wiley & Sons, Ltd.The addition of probiotics in swine nutrition is known to positively influence both health and growth. The current study investigates differences in the hepatic transcriptome profiles between weaned piglets supplemented with Clostridium butyricum (C. butyricum) and control animals that received no probiotic. The liver is an important metabolic organ that plays a critical role in oxidizing triglycerides for energy production, lipid synthesis and degradation, as well as immune regulation in animals. RNA-Seq analysis was carried out on total RNA harvested from the liver of piglets fed with (n = 3) or without (n = 3) 5 × 105 C. butyricum CFU/g. Compared to the control piglets, 588 of the genes examined (352 up-regulated and 236 down-regulated) were significantly differentially expressed at a fold change > 2 and p less then .05 in animals fed with C. butyricum. Quantitative real-time reverse transcription PCR (qRT-PCR) analysis was further used to validate the microarray expression results for 28 genes tested. The functional annotation analyses revealed several genes, processes and pathways with putative involvement in piglet growth and performance. Feeding swine with 5 × 105 C. butyricum CFU/g appears to reinforce their immune status as well as foster the cell cycle and improve the metabolism of carbohydrates, lipids and amino acids. This study provides valuable information about the expression profiles of mRNAs in piglet liver and in-depth functional investigations of these mRNAs that could provide new insights into the molecular networks of growth, immune responses and nutrient metabolism in the porcine liver. © 2020 Blackwell Verlag GmbH.2,6-Difunctionalized dithieno[1,4]thiazines were efficiently synthesized by (pseudo)five- or (pseudo)three-component one-pot processes based on lithiation-electrophilic trapping sequences. As supported by structure-property relationships, the thiophene anellation mode predominantly controls the photophysical and electrochemical properties and the electronic structures (as obtained by DFT calculations). From molecular geometries and redox potentials to fluorescence quantum yields in solution, the interaction of the dithieno[1,4]thiazine-core with the substituents causes striking differences within the series of regioisomers. Most interestingly, strong acceptors introduced in anti - anti dithieno[1,4]thiazines nearly induce a planarization of the ground-state geometry and a highly intense NIR fluorescence ( Φ F = 0.52), whereas an equally substituted syn - syn dithieno[1,4]thiazine exhibits a much stronger folded molecular structure and fluoresces poorly ( Φ F = 0.01). In essence, electrochemical and photophysical properties of dithieno[1,4]thiazines can be tuned widely and outscore the compared phenothiazine with cathodically shifted oxidation potentials and redshifted and more intense absorption bands. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Hypoplastic ascending aorta and interrupted aortic arch (IAA) are rarely associated with dextro-transposition of the great arteries (D-TGA). Severe hypoplastic ascending aorta may preclude coronary artery transfer making arterial switch operation problematic. We report a case of D-TGA with a large subpulmonic ventricular septal defect, IAA, and hypoplastic ascending aorta that underwent successful biventricular surgical repair without coronary artery transfer. © 2020 Wiley Periodicals, Inc.Molecules and materials that demonstrate large amplitude responses to minor changes in their local environment play an important role in the development of new forms of nanotechnology. Molecular daisy chains are a type of a mechanically interlocked molecule that are particularly sensitive to such changes where, in the presence of certain stimuli, the molecular linkage enables muscle-like movement between a reduced-length contracted form and an increased-length expanded form. To date, all reported syntheses of molecular daisy chains are accomplished via passive-template methods, resulting in a majority of structures being switchable only through the addition of an exogenous stimuli such as metal ions or changes in pH. Here, we describe a new approach to these structural motifs that exploits a multi-component active-metal template synthesis to mechanically interlock two pi-rich nanohoop macrocycles into a molecular daisy chain which undergoes large conformational changes via thermal energy. © 2020 WILEY-VCH Verlag GmbH & Co.
Website: https://www.selleckchem.com/products/pf-06463922.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team