NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

The end results involving genetic polymorphisms upon benzene-exposed staff: An organized assessment.
During radiation therapy (RT) of head and neck (HN) cancer, the shape and volume of the parotid glands (PG) may change significantly, resulting in clinically relevant deviations of delivered dose from the planning dose. Early and accurate longitudinal prediction of PG anatomical changes during the RT can be valuable to inform decisions on plan adaptation. selleck chemicals llc We developed a deep neural network for longitudinal predictions using the displacement fields (DFs) between the planning computed tomography (pCT) and weekly cone beam computed tomography (CBCT). Sixty-three HN patients treated with volumetric modulated arc were retrospectively studied. We calculated DFs between pCT and week 1-3 CBCT by B-spline and Demon deformable image registration (DIR). The resultant DFs were subsequently used as input to our novel network to predict the week 4 to 6 DFs for generating predicted weekly PG contours and weekly dose distributions. For evaluation, we measured dice similarity (DICE), and the uncertainty of accumulated dose. Mble to predict future anatomical changes and dose uncertainty of PGs with clinically acceptable accuracy, and hence can be readily integrated into the ART workflow.Mg-doped p-type semiconducting aluminium-gallium-nitride hole source layer (p-AlGaN HSL) materials are quite promising as a source of hole 'p' carriers for the ultraviolet-B (UVB) light-emitting diodes (LEDs) and laser diodes (LDs). However, the p-AlGaN HSL has a central issue of low hole injection due to poor activation of Mg atoms, and the presence of unwanted impurity contamination and the existence of a localized coherent state. Therefore, first the impact of the Mg level on the crystallinity, Al composition and relaxation conditions in the p-AlGaN HSL were studied. An increasing trend in the lattice-relaxation ratios with increasing Mg concentrations in the p-AlGaN HSL were observed. Ultimately, a 40%-60% relaxed and 1.4 μm thick p-AlGaN HSL structure with total threading dislocation densities (total-TDDs) of approximately ∼8-9 × 108 cm-2 was achieved, which almost matches our previous design of a 4 μm thick and 50% relaxed n-AlGaN electron source layer (ESL) with total-TDDs of approximately ∼7-8 × 108 cAlGaN and p-AlGaN contact layers during the flip-chip (FC) process in low operating UVB emitters, including UVB lasers.A detailed model for the locomotory mechanics used by millipedes is provided here through systematic experimentation on the animal and validation of observations through a biomimetic robotic platform. Millipedes possess a powerful gait that is necessary for generating large thrust force required for proficient burrowing. Millipedes implement a metachronal gait through movement of many legs that generates a traveling wave. This traveling wave is modulated by the animal to control the magnitude of thrust force in the direction of motion for burrowing, climbing, or walking. The quasi-static model presented for the millipede locomotion mechanism matches experimental observations on live millipedes and results obtained from a biomimetic robotic platform. The model addresses questions related to the unique morphology of millipedes with respect to their locomotory performance. A complete understanding of the physiology of millipedes and mechanisms that provide modulation of the traveling wave locomotion using a metachronal gait to increase their forward thrust is provided. Further, morphological features needed to optimize various locomotory and burrowing functions are discussed. Combined, these results open opportunity for development of biologically inspired locomotory methods for miniaturized robotic platforms traversing terrains and substrates that present large resistances.Multi-layer graphene, serving as a conductive solid lubricant, is coated on the metal surface of electrical terminals. This graphene layer reduces the wear and the friction between two sliding metal surfaces while maintaining the same level of electrical conduction when a pair of terminals engage. The friction between the metal surfaces was tested under dry sliding in a cyclical insertion process with and without the graphene coating. Comprehensive characterizations were performed on the terminals to examine the insertion effects on graphene using scanning electron microscopy, four-probe resistance characterization, lateral force microscopy, and Raman spectroscopy. With the thin graphene layers grown by plasma enhanced chemical vapor deposition on gold (Au) and silver (Ag) terminals, the insertional forces can be reduced by 74 % and 34 % after the first cycle and 79 % and 32 % after the 10th cycle of terminal engagement compared with pristine Au and Ag terminals. The resistance of engaged terminals remains almost unchanged with the graphene coating. Graphene stays on the terminals to prevent wear-out during the cyclic insertional process and survives the industrial standardized reliability test through high humidity and thermal cycling with almost no change.The effect of gold and silver plasmonic films on the photoluminescence and photostability of InP/ZnSe/ZnSeS/ZnS nanocrystals (quantum dots) is reported. Colloidal gold films promote the photostability enhancement of InP/ZnSe/ZnSeS/ZnS quantum dots (more durable emission properties in the presence of metal nanostructures) through reducing exciton lifetime. In contrast, silver decreases the photostability of InP/ZnSe/ZnSeS/ZnS quantum dots without changing the photoluminescence intensity and kinetics. By adjusting the excitation wavelength closer to the extinction band of gold nanoparticles a 1.8-fold enhancement of luminescence intensity has been obtained using a polyelectrolyte spacer between the metal and InP/ZnSe/ZnSeS/ZnS nanoparticles. Thus, plasmonics offers essential practical improvement of light emitters in terms of their durable luminescent properties upon prolonged optical excitation without losses in luminescence efficiency or even along with increased efficiency.Pumping fluid is essential to numerous applications across a wide range of scales from viscous dominated to inertia driven flows. Most traditional applications occur within a range where inertia is the dominating factor influencing the pump performance, and hence many practical designs are based on mechanisms that rely on this assumption. As one explores smaller devices, however, the increasing effect of viscosity renders these traditional mechanisms ineffective. In the current work, a bio-inspired pump constructed from a two-dimensional oscillating solid and flexible plate to study the effect of diminishing inertia within a narrow channel. The goal is to quantify and better understand the role played by a shift from symmetric to asymmetric kinematics of an oscillating rigid or flexible plate in the transition regime between viscous and inertia dominated flows. This is done through both a temporal asymmetry using a rigid plate (e.g. scallop) and a geometric asymmetry using a passive one-way hinged articulation (e.
Homepage: https://www.selleckchem.com/products/npd4928.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.