NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Success in the Management of Rhinogenic Frustration Brought on by Intranasal Make contact with.
035) and a decrease of anterior curvature ("A" value) starting from 2.54 ± 2.46, which reduced to 1.14 ± 1.60 (P = .005) at 10+ years of follow-up. Two of 27 eyes included showed significant progression after S-CXL (7.4%).

S-CXL was confirmed to be a safe and effective treatment for progressive keratoconus with a failure rate of 7.4% at up to 13 years of follow-up. The authors suggest the use of a combined progression system that evaluates anterior and posterior curvature and with thickness map together with the knowledge of the noise level of the testing system. [J Refract Surg. 2020;36(12)838-843.].
S-CXL was confirmed to be a safe and effective treatment for progressive keratoconus with a failure rate of 7.4% at up to 13 years of follow-up. The authors suggest the use of a combined progression system that evaluates anterior and posterior curvature and with thickness map together with the knowledge of the noise level of the testing system. [J Refract Surg. 2020;36(12)838-843.].
To compare the accuracy of intraocular lens (IOL) power calculation in patients with previous radial keratotomy using the Haigis and Barrett True-K formulas.

In a retrospective cases series of patients with previous radial keratotomy and minimum follow-up of 1.2 months, preoperative data from an IOLMaster 500 or 700 (Carl Zeiss Meditec AG), the IOL power implanted, and the postoperative refraction were used to calculate the refractive prediction error. The primary outcomes were the mean absolute and arithmetic refractive prediction errors and the percentage of eyes with a refractive prediction error within ±0.50 and ±1.00 diopters (D).

One hundred eight eyes were evaluated with a mean follow-up of 6.9 ± 4.9 months. The Haigis formula yielded a mean arithmetic refractive prediction error of -0.29 ± 1.00 D, which was significantly different than that of the Barrett True-K formula, which was -0.03 ± 0.96 D (P < .001). The mean absolute refractive prediction error was 0.80 ± 0.67 for the Haigis formula and 0.74 ± 0.60 for the Barrett True-K formula (P > .05). The percentages of eyes with a refractive prediction error within ±0.50 and ±1.00 D were 43.5% and 65.7% for the Haigis formula and 42.6% and 75.9% for the Barrett True-K formula, respectively (all P > .05). The subgroup analysis revealed that for flat corneas (K1 < 38.00 D), the Barrett True-K formula resulted in more hyperopic results than the Haigis formula.

The Barrett True-K formula exhibited better arithmetic predictability than the Haigis formula; however, it showed a tendency for hyperopic results in very flat corneas. [J Refract Surg. 2020;36(12)832-837.].
The Barrett True-K formula exhibited better arithmetic predictability than the Haigis formula; however, it showed a tendency for hyperopic results in very flat corneas. [J Refract Surg. 2020;36(12)832-837.].
To describe and evaluate a method for calculating intraocular lens (IOL) power in the second operative eye of patients with a history of keratorefractive surgery.

All eyes had undergone cataract surgery by a single surgeon from 2015 to 2018. Postoperative outcomes on the first eye (eg, IOL power implanted and postoperative refractive error) were used to back calculate a "Real K" for the first eye. The difference (delta) between the second and first eye topographic simulated keratometry values was then added to the first eye Real K to calculate the second eye Real K. This Real K value was inputted into the Holladay IOL Consultant software as an "alternate K" to derive an accurate IOL power for the second eye. Mean absolute error, mean error, and percentage of eyes on target using the Delta K method were compared with results obtained with intraoperative abserrometry and the Haigis-L and Barrett True-K No History formulas.

The mean error for the Delta K method was significantly better than the Haigis-L (P = .00001) and Barrett True-K No History (P = .027) formulas, and on par with intra-operative aberrometry (P = .25). The mean absolute error of the Delta K method was significantly better than the Haigis-L formula (P = .03). The Delta K mean absolute error was on par with intraoperative aberrometry (P = .81) and the Barrett True-K No History formula (P = .56).

The Delta K mean absolute error is comparable to the Barrett True-K No History formula. Semagacestat order The mean error is lower than that calculated with the Barrett True-K No History formula and comparable to intraoperative aberrometry. [J Refract Surg. 2020;36(12)826-831.].
The Delta K mean absolute error is comparable to the Barrett True-K No History formula. The mean error is lower than that calculated with the Barrett True-K No History formula and comparable to intraoperative aberrometry. [J Refract Surg. 2020;36(12)826-831.].
To evaluate different calculation approaches for toric intraocular lens (IOL) calculation in cases with high posterior corneal astigmatism (PCA).

Consecutive patients who underwent cataract extraction with implantation of toric IOLs by a single surgeon were reviewed. Eyes with measured PCA of 0.80 diopters (D) or greater were included. Errors in the predicted postoperative refractive astigmatism were calculated for the Abulafia-Koch formula, vector summation of anterior keratometry with posterior tomography, and the Barrett toric calculator using predicted and measured PCA.

One hundred seventy-three consecutive cases of toric IOL implantation were reviewed. Seventeen eyes (10%) had PCA of 0.80 D or greater and were investigated. The mean absolute error was the lowest with Barrett's measured PCA (0.55 ± 0.38) followed by Barrett's predicted PCA mean absolute error (0.65 ± 0.31), vector summation (0.69 ± 0.33), and the Abulafia-Koch formula (0.80 ± 0.36). The rate of eyes with prediction errors within 0.25 D or less was the highest for Barrett's measured PCA (29.4%) followed by Barrett's predicted PCA (5.9%) and no eyes for the Abulafia-Koch formula and vector summation. The mean centroid prediction errors were lowest for Barrett's measured PCA and Barrett's predicted PCA (0.14 ± 0.66 @70, 0.14 ± 0.73 @179, respectively), followed by vector summation (0.35 ± 0.70 @5), and the Abulafia-Koch formula (0.39 ± 0.80 @179).

The results suggest that in cases of high PCA, the Barrett toric calculator using direct measurements of PCA may have a potential advantage over predicted PCA in toric IOL calculations and vector summation of the anterior and posterior corneal astigmatism. [J Refract Surg. 2020;36(12)820-825.].
The results suggest that in cases of high PCA, the Barrett toric calculator using direct measurements of PCA may have a potential advantage over predicted PCA in toric IOL calculations and vector summation of the anterior and posterior corneal astigmatism. [J Refract Surg. 2020;36(12)820-825.].
Homepage: https://www.selleckchem.com/products/Semagacestat(LY450139).html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.