Notes
Notes - notes.io |
Zero-dimensional (0D) organic-inorganic metal halides, with their high stability and broadband emission features, have aroused great interest in optoelectronic applications. Metal halides of the type Bmpip2MX4 (M = Pb, Sn, or Ge; X = I or Br) have 0D disphenoidal coordinated structures that offer an excellent opportunity to investigate their emissive nature and molecular behavior. Herein, the photophysical properties and carrier transport behavior of 0D Bmpip2MX4 metal halides are studied by using density functional theory. Our results indicate that Bmpip2MX4 metal halides present broadband emission widths and significant Stokes shifts. In particular, Bmpip2SnBr4 possesses the largest Stokes shift (1.981 eV) and the shortest exciton self-trapping time, demonstrating the best photoluminescence emission ability. Bmpip2GeI4 exhibits the lowest electron-hole creation energy and the best photoresponse capacity. Moreover, Bmpip2PbI4 demonstrates superior transport capabilities with high carrier mobilities of 4.56 × 10-3 and 2.51 × 10-7 cm2 V-1 s-1 for hole and electron carriers, respectively, which makes it comparable even with typical hole transport materials (e.g., RR P3HT, ∼10-4 cm2 V-1 s-1). These findings highlight exciting opportunities for the future development and application of such kinds of 0D metal halides in optoelectronics.Nitrogen reduction reaction (NRR) plays an important role in chemical industry, so it is significant to develop low-cost and efficient electrocatalysts for nitrogen fixation instead of the traditional Haber-Bosch process. In this paper, the electrocatalytic performance of various single atoms doped on two-dimensional metal diborides with a B vacancy for N2 reduction to ammonia is calculated and predicted. By screening numerous catalysts, we find that Ti@VB2 is the most active catalyst for NRR, and the limiting potential of Ti@VB2 for NRR is -0.61 V. Through high-throughput search and LASSO regression, an integrated descriptor combining the intrinsic properties of the single transition metal atom (TM) and the substrate (MB2) is proposed, which can fit the relationship between intrinsic properties of catalysts and NRR activity well. Therefore, this study not only discovers a promising electrocatalyst for nitrogen fixation but also provides a strategy for predicting the activity of catalysts.We describe an open-source and widely adaptable Python library that recognizes morphological features and domains in images collected via scanning probe microscopy. π-Conjugated polymers (CPs) are ideal for evaluating the Materials Morphology Python (m2py) library because of their wide range of morphologies and feature sizes. Using thin films of nanostructured CPs, we demonstrate the functionality of a general m2py workflow. We apply numerical methods to enhance the signals collected by the scanning probe, followed by Principal Component Analysis (PCA) to reduce the dimensionality of the data. Then, a Gaussian Mixture Model segments every pixel in the image into phases, which have similar material-property signals. Finally, the phase-labeled pixels are grouped and labeled as morphological domains using either connected components labeling or persistence watershed segmentation. These tools are adaptable to any scanning probe measurement, so the labels that m2py generates will allow researchers to individually address and analyze the identified domains in the image. This level of control, allows one to describe the morphology of the system using quantitative and statistical descriptors such as the size, distribution, and shape of the domains. Such descriptors will enable researchers to quantitatively track and compare differences within and between samples.In spite of the attractive potential application of the dynamic behavior and defect of metal-organic framework (MOF), the achievement of these features is a challenging goal in the MOF research field. Herein, we report a Co(II) MOF, namely, [Co3(L)2(4-PTZ)2(H2O)2]n·solvent (H2L = 5-(isonicotinamido)isophthalic acid, 4-PTZ = 5-(4-pyridyl)-1H-tetrazole), that features dynamic structural transformation behaviors. By varying the coordination configuration of metal center through the removal of coordinated water molecules, the porous compound could undergo structural transformation to give a new crystalline phase with larger pore dimension. Moreover, the new phase features a mesoporous structure originating from the spatial defect that formed with the transformation process, which indicates that the modulation of dynamic behavior of the MOF could be a potential method for the engineering of a spatial defect. In addition, the gas sorption investigation results reveal that the new phase has enhanced selectivity for CO2/N2, CO2/CH4, and C2H2/C2H4 systems compared with that of the pristine phase, suggesting the potential of spatial defect engineering for the tuning of MOF gas sorption properties.Non-ionic surfactant modulated aggregation induced emission enhancement (AIEE) of Dimethyl-2,5-bis(4-methoxyphenylamino)terephthalate (DBMPT) has been investigated. PI3K inhibitor DBMPT exhibits unidirectional aggregated growth with non-ionic triton X 100 (TX-100) to produce highly luminescent nanorods, dimension and emission intensity of which are controlled by concentration of DBMPT. Energy transfer from Perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTAD) to these nanorods in aqueous medium produces pure white light emission with the CIE chromaticity coordinates of (0.33, 0.36) and significantly high quantum yield of 35%. Gelation of the system with agarose yields a bright white light emitting gel. Both these factors demonstrate excellent potential for application of this system in light harvesting and as an advanced material for organic electronic devices.All possible variants of β-proline functionalized tripeptides consisting of homo/hetero chiral monomeric all-cis 5-arylpyrrolidine-2,4-dicarboxylate units were synthesized for the first time by a nonpeptidic coupling method based on 1,3-dipolar cycloaddition chemistry of azomethine ylides. Secondary structures of β-proline tripeptides in solution were determined using the NMR spectroscopy data. link2 o-(Trifluoromethyl)phenyl substituent contributes to stereoselectivity of 1,3-dipolar cycloaddition and structural features of β-proline tripeptides. A β-proline CF3-tripeptide with alternating absolute chirality between adjacent pyrrolidine units mimics natural PPII helix secondary structure.A new type of solar cell based on Cu-doped (p-type) and I-doped (n-type) Sb2Se3 has been designed and fabricated using magnetron sputtering with two different thicknesses of absorber. The overall objective is for better understanding the charge recombination mechanism, especially at the interface region. The investigation has been specifically performed using IMPS (intensity modulated photocurrent spectroscopy), IMVS (intensity modulated photovoltage spectroscopy), and diode characterizations. It has been found that an increase of the absorber thickness leads to a shorter carrier lifetime, but longer diffusion length and lower trap density, resulting in significantly better performance. link3 Furthermore, it is demonstrated that trap-assisted recombination does not affect the short-circuit current density (Jsc), but significantly decreases the open-circuit voltage (Voc). As a result, an encouraging power conversion efficiency (PCE) of 2.41%, fill factor (FF) of 41%, Jsc of 20 mA/cm2, and Voc of 294 mV are obtained. Most importantly, key parameters for further increasing the PCE have been identified.We present that activation of CoMoO4-based microrod arrays in KOH (1.0 M, 2 h) allows us to significantly improve their electrochemical hydrogen evolution performance in phosphate buffer solution (1.0 M, pH = 7.1). The activation mechanism originates from the conversion of the surface layer of CoMoO4 to Co(OH)2 nanosheets, together with the release of Mo3O102- ions into the activation solution. Our experimental and calculated results suggest that the Co(OH)2 nanosheets on the surface of the CoMoO4-based microrod arrays show the ability to improve water molecule disassociation and stabilize the catalytic activity of the two-component catalysts by decreasing their overpotentials in the hydrogen evolution reaction. When extending this strategy to activate P-doped CoMoO4 with a low hydrogen absorption free energy, we report the synthesis of a new class of superior neutral electrochemical hydrogen evolution catalysts of P-doped CoMoO4-Co(OH)2 microrod arrays. We show that a low overpotential of about 30 mV (obtained from bulk electrolysis) is required to deliver a current density of 10 mA cm-2 in the neutral media. By making use of our catalyst and NiFe double hydroxide as cathodic and anodic electrodes, respectively, we fabricated a two-electrode electrolysis device for neutral overall water splitting. Our results showed a low cell voltage of 1.78 V (obtained from bulk electrolysis) that is needed for delivering a current density of about 10 mA cm-2 in the neutral electrolyte, even outperforming the state-of-the-art catalyst combination of Pt/C∥RuO2 in terms of catalytic activity and stability. These findings suggest that our strategy may be utilized as a facile but useful strategy toward the activation of molybdate catalysts to improve their HER performance in both basic and neutral media.Protein glycosylation, the attachment of sugars to amino acid side chains, can endow proteins with a wide variety of properties of great interest to the engineering biology community. However, natural glycosylation systems are limited in the diversity of glycoproteins they can synthesize, the scale at which they can be harnessed for biotechnology, and the homogeneity of glycoprotein structures they can produce. Here we provide an overview of the emerging field of synthetic glycobiology, the application of synthetic biology tools and design principles to better understand and engineer glycosylation. Specifically, we focus on how the biosynthetic and analytical tools of synthetic biology have been used to redesign glycosylation systems to obtain defined glycosylation structures on proteins for diverse applications in medicine, materials, and diagnostics. We review the key biological parts available to synthetic biologists interested in engineering glycoproteins to solve compelling problems in glycoscience, describe recent efforts to construct synthetic glycoprotein synthesis systems, and outline exemplary applications as well as new opportunities in this emerging space.Linker design is crucial to the success of antibody-drug conjugates (ADCs). In this work, we developed a modular linker format for attaching molecular cargos to antibodies based on strand pairing between complementary oligonucleotides. We prepared antibody-oligonucleotide conjugates (AOCs) by attaching 18-mer oligonucleotides to an anti-HER2 antibody through thiol-maleimide chemistry, a method generally applicable to any immunoglobulin with interchain disulfide bridges. The hybridization of drug-bearing complementary oligonucleotides to our AOCs was rapid, stoichiometric, and sequence-specific. AOCs loaded with cytotoxic payloads were able to selectively target HER2-overexpressing cell lines such as SK-BR-3 and N87, with in vitro potencies similar to that of the marketed ADC Kadcyla (T-DM1). Our results demonstrated the potential of utilizing AOCs as a highly versatile and modular platform, where a panel of well-characterized AOCs bearing DNA, RNA, or various nucleic acid analogs, such as peptide nucleic acids, could be easily paired with any cargo of choice for a wide range of diagnostic or therapeutic applications.
Read More: https://www.selleckchem.com/products/akti-1-2.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team