Notes
Notes - notes.io |
ct of visual speed of processing training among those in the assisted living communities, caution is advised when using these two visual speed of processing training modalities in assisted living communities until further research verifies or refutes our findings and the underlying etiological pathways.Digital health applications (apps) have the potential to improve health behaviors and outcomes. We aimed to examine the effectiveness of a consumer web-based app linked to primary care electronic health records (EHRs). CONNECT was a multicenter randomized controlled trial involving patients with or at risk of cardiovascular disease (CVD) recruited from primary care (Clinical Trial registration ACTRN12613000715774). Intervention participants received an interactive app which was pre-populated and refreshed with EHR risk factor data, diagnoses and, medications. Interactive risk calculators, motivational messages and lifestyle goal tracking were also included. Control group received usual health care. Primary outcome was adherence to guideline-recommended medications (≥80% of days covered for blood pressure (BP) and statin medications). Secondary outcomes included attainment of risk factor targets and eHealth literacy. In total, 934 patients were recruited; mean age 67.6 (±8.1) years. At 12 months, the proportion with >80% days covered with recommended medicines was low overall and there was no difference between the groups (32.8% vs. 29.9%; relative risk [RR] 1.07 [95% CI, 0.88-1.20] p = 0.49). There was borderline improvement in the proportion meeting BP and LDL targets in intervention vs. control (17.1% vs. 12.1% RR 1.40 [95% CI, 0.97-2.03] p = 0.07). The intervention was associated with increased attainment of physical activity targets (87.0% intervention vs. 79.7% control, p = 0.02) and e-health literacy scores (72.6% intervention vs. 64.0% control, p = 0.02). In conclusion, a consumer app integrated with primary health care EHRs was not effective in increasing medication adherence. Borderline improvements in risk factors and modest behavior changes were observed.Wearable devices enable theoretically continuous, longitudinal monitoring of physiological measurements such as step count, energy expenditure, and heart rate. Although the classification of abnormal cardiac rhythms such as atrial fibrillation from wearable devices has great potential, commercial algorithms remain proprietary and tend to focus on heart rate variability derived from green spectrum LED sensors placed on the wrist, where noise remains an unsolved problem. Here we develop DeepBeat, a multitask deep learning method to jointly assess signal quality and arrhythmia event detection in wearable photoplethysmography devices for real-time detection of atrial fibrillation. The model is trained on approximately one million simulated unlabeled physiological signals and fine-tuned on a curated dataset of over 500 K labeled signals from over 100 individuals from 3 different wearable devices. We demonstrate that, in comparison with a single-task model, our architecture using unsupervised transfer learning through convolutional denoising autoencoders dramatically improves the performance of atrial fibrillation detection from a F1 score of 0.54 to 0.96. We also include in our evaluation a prospectively derived replication cohort of ambulatory participants where the algorithm performed with high sensitivity (0.98), specificity (0.99), and F1 score (0.93). We show that two-stage training can help address the unbalanced data problem common to biomedical applications, where large-scale well-annotated datasets are hard to generate due to the expense of manual annotation, data acquisition, and participant privacy.Tuberculosis (TB) is the leading cause of preventable death in HIV-positive patients, and yet often remains undiagnosed and untreated. Linsitinib inhibitor Chest x-ray is often used to assist in diagnosis, yet this presents additional challenges due to atypical radiographic presentation and radiologist shortages in regions where co-infection is most common. We developed a deep learning algorithm to diagnose TB using clinical information and chest x-ray images from 677 HIV-positive patients with suspected TB from two hospitals in South Africa. We then sought to determine whether the algorithm could assist clinicians in the diagnosis of TB in HIV-positive patients as a web-based diagnostic assistant. Use of the algorithm resulted in a modest but statistically significant improvement in clinician accuracy (p = 0.002), increasing the mean clinician accuracy from 0.60 (95% CI 0.57, 0.63) without assistance to 0.65 (95% CI 0.60, 0.70) with assistance. However, the accuracy of assisted clinicians was significantly lower (p less then 0.001) than that of the stand-alone algorithm, which had an accuracy of 0.79 (95% CI 0.77, 0.82) on the same unseen test cases. These results suggest that deep learning assistance may improve clinician accuracy in TB diagnosis using chest x-rays, which would be valuable in settings with a high burden of HIV/TB co-infection. Moreover, the high accuracy of the stand-alone algorithm suggests a potential value particularly in settings with a scarcity of radiological expertise.Background Contextual factors such as an intervention's setting are key to understanding how interventions to change behaviour have their effects and patterns of generalisation across contexts. The intervention's setting is not consistently reported in published reports of evaluations. Using ontologies to specify and classify intervention setting characteristics enables clear and reproducible reporting, thus aiding replication, implementation and evidence synthesis. This paper reports the development of a Setting Ontology for behaviour change interventions as part of a Behaviour Change Intervention Ontology, currently being developed in the Wellcome Trust funded Human Behaviour-Change Project. Methods The Intervention Setting Ontology was developed following methods for ontology development used in the Human Behaviour-Change Project 1) Defining the ontology's scope, 2) Identifying key entities by reviewing existing classification systems (top-down) and 100 published behaviour change intervention reports (bottom-up), 3) Refining the preliminary ontology by literature annotation of 100 reports, 4) Stakeholder reviewing by 23 behavioural science and public health experts to refine the ontology, 5) Assessing inter-rater reliability of using the ontology by two annotators familiar with the ontology and two annotators unfamiliar with it, 6) Specifying ontological relationships between setting entities and 7) Making the Intervention Setting Ontology machine-readable using Web Ontology Language (OWL) and publishing online.
Here's my website: https://www.selleckchem.com/products/OSI-906.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team