Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
A three-component and redox-neutral trifluoromethylative alkenylation of unactivated alkenes with β-nitrostyrenes has been developed under visible-light. This metal-free protocol utilizes the easy to handle Langlois reagent (CF3SO2Na) as the CF3 source and is suitable for various unactivated alkenes and β-nitrostyrenes, affording a series of trifluoromethylated aromatic alkenes under mild conditions in good to excellent yields.Palladium-catalyzed asymmetric functionalization of unbiased methylene C(sp3)-H bonds is a long-standing challenge. Here, we report a Pd(ii)-catalyzed highly enantioselective arylation of unbiased methylene C(sp3)-H bonds enabled by a strongly coordinating bidentate 2-pyridinylisopropyl (PIP) directing group and an easily accessible 3,3'-F2-BINOL chiral ligand. The use of aryl iodides with the combination of 3,3'-F2-BINOL was beneficial for high enantiocontrol. A range of aliphatic amides and aryl iodides were tolerated, providing the desired arylated products in high enantioselectivities (up to 96% ee). see more The PIP directing group could be removed under mild conditions without erosion of enantiopurity.Amorphous metal nanoparticles (A-NPs) have aroused great interest in their structural disordering nature and combined downsizing strategies (e.g. nanoscaling), both of which are beneficial for highly strengthened properties compared to their crystalline counterparts. Conventional synthesis strategies easily induce product contamination and/or size limitations, which largely narrow their applications. In recent years, laser ablation in liquid (LAL) and laser fragmentation in liquid (LFL) as "green" and scalable colloid synthesis methodologies have attracted extensive enthusiasm in the production of ultrapure crystalline NPs, while they also show promising potential for the production of A-NPs. Yet, the amorphization in such methods still lacks sufficient rules to follow regarding the formation mechanism and criteria. To that end, this article reviews amorphous metal oxide and carbide NPs from LAL and LFL in terms of NP types, liquid selection, target elements, laser parameters, and possible formation mechanism, all of which play a significant role in the competitive relationship between amorphization and crystallization. Furthermore, we provide the prospect of laser-generated metallic glass nanoparticles (MG-NPs) from MG targets. The current and potential applications of A-NPs are also discussed, categorized by the attractive application fields e.g. in catalysis and magnetism. The present work aims to give possible selection rules and perspective on the design of colloidal A-NPs as well as the synthesis criteria of MG-NPs from laser-based strategies.Motivated from the central role of the mean-square displacement and its second time-derivative - that is the velocity autocorrelation function in the description of Brownian motion and its implications to microrheology, we revisit the physical meaning of the first time-derivative of the mean-square displacement of Brownian particles. By employing a rheological analogue for Brownian motion, we show that the time-derivative of the mean-square displacement of Brownian microspheres with mass m and radius R immersed in any linear, isotropic viscoelastic material is identical to , where h(t) is the impulse response function (strain history γ(t), due to an impulse stress τ(t) = δ(t - 0)) of a rheological network that is a parallel connection of the linear viscoelastic material with an inerter with distributed inertance . The impulse response function of the viscoelastic material-inerter parallel connection derived in this paper at the stress-strain level of the rheological analogue is essentially the response function of the Brownian particles expressed at the force-displacement level by Nishi et al. after making use of the fluctuation-dissipation theorem. By employing the viscoelastic material-inerter rheological analogue we derive the mean-square displacement and its time-derivatives of Brownian particles immersed in a viscoelastic material described with a Maxwell element connected in parallel with a dashpot and we show that for Brownian motion of microparticles immersed in such fluid-like materials, the impulse response function h(t) maintains a finite constant value in the long term.Thin deposits of aligned semiconducting titanium oxide and of zinc oxide nanowires are prepared by grazing incidence spraying on transparent substrates. By measuring the transmittance of linearly polarized light of these anisotropic assemblies as compared to that of randomly oriented nanowires and of spherical nanoparticles, we find that titanium oxide nanowires exhibit an orientation-dependent variation of the apparent optical band gap energy at room temperature (>100 meV), depending on the direction of the polarization of the light with respect to the direction of alignment of the nanowires.In this work, inspired by a water-assisted three-dimensional supramolecular structure 1, we use a mixed-ligand strategy to form a 3D pillared-layered matrix by the introduction of linear ligands to compete against the water molecules. The resulting analogue microporous MOFs of 2-H, 2-F and 2-N, decorated with different functional groups, similarly show the CO2 uptake. Thanks to the negligible N2 adsorption capacity, enhanced selective adsorption towards CO2 is achieved in compound 2-N. That is, we present here an alternative plan for the high CO2 selective adsorption performance. In addition, the structure stability and moderate affinity for CO2 of these microporous MOFs endow them with excellent reusability.The conformational behavior and spatial organization of self-avoiding semi-flexible ring polymers, that are fully adsorbed on solid substrates, are investigated via systematic coarse-grained molecular dynamics simulations. Our results show that both conformations and spatial organization of the polymers depend strongly on their bending stiffness, κ, and on their areal number density, ρ. For ρ less then ρ*, where ρ* is the overlap density, and for low values of κ, thermal fluctuations lead to weakly anisotropic instantaneous conformations of the polymers. The interplay between thermal fluctuations and polymer stiffness leads to a non-monotonic dependence of the polymers elongation on κ with a maximum elongation at some intermediate κ. Regardless of κ, the polymers elongation is almost independent of ρ for ρ ⪅ ρ*, then increases with ρ. At ρ ≈ ρ* and high κ, the almost circularly-shaped polymers self-assemble into a triangular lattice with quasi-long range order. For ρ above ρ* and high κ, crowding of the polymers leads to their self-assembly into liquid-crystalline phases. In particular, for ρ moderately above ρ* and high κ, the polymer conformations are obround and self-assemble into domains with smectic-A-like order. At higher densities, the polymer have a biconcave geometry and self-assemble into domains with smectic-C-like order.Smart scaffolds based on shape memory polymer (SMPs) have been increasingly studied in tissue engineering. The unique shape actuating ability of SMP scaffolds has been utilized to improve delivery and/or tissue defect filling. In this regard, these scaffolds may be self-deploying, self-expanding, or self-fitting. Smart scaffolds are generally thermoresponsive or hydroresponsive wherein shape recovery is driven by an increase in temperature or by hydration, respectively. Most smart scaffolds have been directed towards regenerating bone, cartilage, and cardiovascular tissues. A vast variety of smart scaffolds can be prepared with properties targeted for a specific tissue application. This breadth of smart scaffolds stems from the variety of compositions employed as well as the numerous methods used to fabricated scaffolds with the desired morphology. Smart scaffold compositions span across several distinct classes of SMPs, affording further tunability of properties using numerous approaches. Specifically, these SMPs include those based on physically cross-linked and chemically cross-linked networks and include widely studied shape memory polyurethanes (SMPUs). Various additives, ranging from nanoparticles to biologicals, have also been included to impart unique functionality to smart scaffolds. Thus, given their unique functionality and breadth of tunable properties, smart scaffolds have tremendous potential in tissue engineering.This study was conducted to investigate the effect of whey protein hydrolysate (WPH) on osteogenic cell differentiation and its growth-promoting effects in rats. Alkaline phosphatase (ALP) activity and calcium deposition were measured by treating MC3T3-E1 cells with WPH, and mRNA and protein levels of factors related to osteoblast differentiation were assessed. ALP activity and calcium deposition were significantly increased in the WPH group (p less then 0.001). These findings were confirmed by the upregulation of ALP, bone morphogenic protein, bone sialoprotein, and collagen at the mRNA and protein levels. Furthermore, to confirm the growth-promoting effect of WPH, bone growth was analyzed by administering 3-week-old Sprague-Dawley rats with whey protein or WPH. Moreover, serum levels of calcium, ALP, and insulin-like growth factor-1 (IGF-1) were analyzed, bone analysis was performed using micro-CT, and the size of the growth plate was measured by Cresyl violet staining. When rats were administered with a high dose of WPH (600 mg per kg per day), calcium levels decreased significantly, while ALP levels (1.14-fold; p less then 0.01), IGF-1 levels, tibia length, and growth plate height increased significantly compared to those in the control group. Collectively, WPH has shown to be effective in bone differentiation and bone growth.Utilization of metal-organic frameworks as heterogeneous catalysts is crucial owing to their abundant catalytic sites and well-defined porous structures. Highly robust [Cu3(trz)3(μ3-OH)(OH)2(H2O)4]·2H2O (trz = 1,2,4-triazole) was employed as a catalyst for liquid-phase cyclohexene oxidation with hydrogen peroxide (H2O2). Possessing the porous structure together with Lewis acid attributes from the triangular [Cu3(trz)3(μ3-OH)] center, selective oxidation of cyclohexene to allylic products gives a molar yield of 31% with 87% selectivity. According to the highly selective allylic production, the reaction over the present Cu-MOF plausibly occurs via homolytic activation of H2O2. This finding elucidates the unique features of the MOF for efficient catalysis of cyclohexene oxidation.An organometal catalytic conversion of 3-aminooxindoles for the diastereo- and enantioselective synthesis of homoallylic aminooxindoles has been described. The asymmetric allylic alkylation of 3-aminooxindoles with allyl carboxylates proceeded smoothly to afford a series of chiral 3-allyl-3-aminooxindoles. This work offers an alternative route to build these scaffolds. The application of this protocol is also highlighted by a significant conversion of products to the potential applicable spiro[indoline-3,2'-pyrrolidin]-2-one derivatives.Pyrido-fused quinazolinones were synthesized via copper-catalyzed cascade C(sp2)-H amination and annulation of 2-aminoarylmethanols with isoquinolines or pyridines. The transformation proceeded readily in the presence of a commercially available CuCl2 catalyst with molecular oxygen as a green oxidant. Moreover, the dehydrogenative cross-coupling of 2-aminoarylmethanols with tetrahydroisoquinolines was explored, in which CuBr exhibited higher catalytic activity than CuCl2. Broad substrate scope with good tolerance of functionalities was observed under the optimized reaction conditions. The bioactive naturally occurring alkaloid rutaecarpine could be obtained by this strategy. The remarkable feature of this protocol is that complicated heterocyclic structures are readily achieved in a single synthetic step from easily accessible reactants and catalysts. This pathway to pyrido-fused quinazolinones would be complementary to existing protocols.
Read More: https://www.selleckchem.com/products/cynarin.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team