Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
We investigate the response characteristics of a two-dimensional neuron model exposed to an externally applied extremely low frequency (ELF) sinusoidal electric field and the synchronization of neurons weakly coupled with gap junction. We find, by numerical simulations, that neurons can exhibit different spiking patterns, which are well observed in the structure of the recurrence plot (RP). We further study the synchronization between weakly coupled neurons in chaotic regimes under the influence of a weak ELF electric field. In general, detecting the phases of chaotic spiky signals is not easy by using standard methods. Recurrence analysis provides a reliable tool for defining phases even for noncoherent regimes or spiky signals. Recurrence-based synchronization analysis reveals that, even in the range of weak coupling, phase synchronization of the coupled neurons occurs and, by adding an ELF electric field, this synchronization increases depending on the amplitude of the externally applied ELF electric field. We further suggest a novel measure for RP-based phase synchronization analysis, which better takes into account the probabilities of recurrences.A widely used clustering algorithm, density peak clustering (DPC), assigns different attribute values to data points through the distance between data points, and then determines the number and range of clustering by attribute values. However, DPC is inefficient when dealing with scenes with a large amount of data, and the range of parameters is not easy to determine. To fix these problems, we propose a quantum DPC (QDPC) algorithm based on a quantum DistCalc circuit and a Grover circuit. The time complexity is reduced to O(log(N2)+6N+N), whereas that of the traditional algorithm is O(N2). The space complexity is also decreased from O(N·⌈logN⌉) to O(⌈logN⌉).In this paper, we consider the stationary double-diffusive natural convection model, which can model heat and mass transfer phenomena. Based on the fixed point theorem, the existence and uniqueness of the considered model are proved. Moreover, we design three finite element iterative methods for the considered problem. Under the uniqueness condition of a weak solution, iterative method I is stable. Compared with iterative method I, iterative method II is stable with a stronger condition. Moreover, iterative method III is stable with the strongest condition. From the perspective of viscosity, iterative method I displays well in the case of a low viscosity number, iterative method II runs well with slightly low viscosity, and iterative method III can deal with high viscosity. Finally, some numerical experiments are presented for testing the correctness of the theoretic analysis.In the user-centric, cell-free, massive multi-input, multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) system, a large number of deployed access points (APs) serve user equipment (UEs) simultaneously, using the same time-frequency resources, and the system is able to ensure fairness between each user; moreover, it is robust against fading caused by multi-path propagation. Existing studies assume that cell-free, massive MIMO is channel-hardened, the same as centralized massive MIMO, and these studies address power allocation and energy efficiency optimization based on the statistics information of each channel. In cell-free, massive MIMO systems, especially APs with only one antenna, the channel statistics information is not a complete substitute for the instantaneous channel state information (CSI) obtained via channel estimation. In this paper, we propose that energy efficiency is optimized by power allocation with instantaneous CSI in the user-centric, cell-free, massive MIMO-OFDM system, and we consider the effect of CSI exchanging between APs and the central processing unit. In addition, we design different resource block allocation schemes, so that user-centric, cell-free, massive MIMO-OFDM can support enhanced mobile broadband (eMBB) for high-speed communication and massive machine communication (mMTC) for massive device communication. The numerical results verify that the proposed energy efficiency optimization scheme, based on instantaneous CSI, outperforms the one with statistical information in both scenarios.We present a case study for Bayesian analysis and proper representation of distributions and dependence among parameters when calibrating process-oriented environmental models. A simple water quality model for the Elbe River (Germany) is referred to as an example, but the approach is applicable to a wide range of environmental models with time-series output. Model parameters are estimated by Bayesian inference via Markov Chain Monte Carlo (MCMC) sampling. While the best-fit solution matches usual least-squares model calibration (with a penalty term for excessive parameter values), the Bayesian approach has the advantage of yielding a joint probability distribution for parameters. This posterior distribution encompasses all possible parameter combinations that produce a simulation output that fits observed data within measurement and modeling uncertainty. Bayesian inference further permits the introduction of prior knowledge, e.g., positivity of certain parameters. https://www.selleckchem.com/products/etomoxir-na-salt.html The estimated distribution shows to which extent model parameters are controlled by observations through the process of inference, highlighting issues that cannot be settled unless more information becomes available. An interactive interface enables tracking for how ranges of parameter values that are consistent with observations change during the process of a step-by-step assignment of fixed parameter values. Based on an initial analysis of the posterior via an undirected Gaussian graphical model, a directed Bayesian network (BN) is constructed. The BN transparently conveys information on the interdependence of parameters after calibration. Finally, a strategy to reduce the number of expensive model runs in MCMC sampling for the presented purpose is introduced based on a newly developed variant of delayed acceptance sampling with a Gaussian process surrogate and linear dimensionality reduction to support function-valued outputs.The discrepancy among one-electron and two-electron densities for diverse N-electron atomss, enclosing neutral systems (with nuclear charge Z=N) and charge-one ions (|N-Z|=1), is quantified by means of mutual information, I, and Quantum Similarity Index, QSI, in the conjugate spaces position/momentum. These differences can be interpreted as a measure of the electron correlation of the system. The analysis is carried out by considering systems with a nuclear charge up to Z=103 and singly charged ions (cations and anions) as far as N=54. The interelectronic correlation, for any given system, is quantified through the comparison of its double-variable electron pair density and the product of the respective one-particle densities. An in-depth study along the Periodic Table reveals the importance, far beyond the weight of the systems considered, of their shell structure.Despite the importance of maternal gestational weight gain, it is not yet conclusively understood how weight gain during different stages of pregnancy influences health outcomes for either mother or child. We partially attribute this to differences in and the validity of statistical methods for the analysis of longitudinal and scalar outcome data. In this paper, we propose a Bayesian joint regression model that estimates and uses trajectory parameters as predictors of a scalar response. Our model remedies notable issues with traditional linear regression approaches found in the clinical literature. In particular, our methodology accommodates nonprospective designs by correcting for bias in self-reported prestudy measures; truly accommodates sparse longitudinal observations and short-term variation without data aggregation or precomputation; and is more robust to the choice of model changepoints. We demonstrate these advantages through a real-world application to the Alberta Pregnancy Outcomes and Nutrition (APrON) dataset and a comparison to a linear regression approach from the clinical literature. Our methods extend naturally to other maternal and infant outcomes as well as to areas of research that employ similarly structured data.This editorial introduces the second Special Issue entitled "Carnot Cycle and Heat Engine Fundamentals and Applications II" https//www [...].We formulate binary fragmentation as a discrete stochastic process in which an integer mass k splits into two integer fragments j, k-j, with rate proportional to the fragmentation kernel Fj,k-j. We construct the ensemble of all distributions that can form in fixed number of steps from initial mass M and obtain their probabilities in terms of the fragmentation kernel. We obtain its partition function, the mean distribution and its evolution in time, and determine its stability using standard thermodynamic tools. We show that shattering is a phase transition that takes place when the stability conditions of the partition function are violated. We further discuss the close analogy between shattering and gelation, and between fragmentation and aggregation in general.Information theory can be used to analyze the cost-benefit of visualization processes. However, the current measure of benefit contains an unbounded term that is neither easy to estimate nor intuitive to interpret. In this work, we propose to revise the existing cost-benefit measure by replacing the unbounded term with a bounded one. We examine a number of bounded measures that include the Jenson-Shannon divergence, its square root, and a new divergence measure formulated as part of this work. We describe the rationale for proposing a new divergence measure. In the first part of this paper, we focus on the conceptual analysis of the mathematical properties of these candidate measures. We use visualization to support the multi-criteria comparison, narrowing the search down to several options with better mathematical properties. The theoretical discourse and conceptual evaluation in this part provides the basis for further data-driven evaluation based on synthetic and experimental case studies that are reported in the second part of this paper.Non-orthogonal multiple access (NOMA) is a promising technology for future beyond-5G wireless networks, whose fundamental information-theoretic limits are yet to be fully explored. Considering regular sparse code-domain NOMA (with a fixed and finite number of orthogonal resources allocated to any designated user and vice versa), this paper extends previous results by the authors to a setting comprising two classes of users with different power constraints. Explicit rigorous closed-form analytical inner and outer bounds on the achievable rate (total class throughput) region in the large-system limit are derived and comparatively investigated in extreme-SNR regimes. The inner bound is based on the conditional vector entropy power inequality (EPI), while the outer bound relies on a recent strengthened version of the EPI. Valuable insights are provided into the potential performance gains of regular sparse NOMA in practically oriented settings, comprising, e.g., a combination of low-complexity devices and broadband users with higher transmit power capabilities, or combinations of cell-edge and cell-center users.
Read More: https://www.selleckchem.com/products/etomoxir-na-salt.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team