Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The paper gives recommendations regarding the implication of different technology choices in the framework of the future Moroccan energy system.
Coronaviruses are responsible for several human diseases, such as the infectious novel coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
is a natural food supplement with a known safety profile that may provide a wealth of documented antiviral compounds.
To explore the studies supporting the
potential for hitting SARS-CoV-2 targets.
A literature search for published or preprint in silico studies between 1990 and 2020 in electronic databases (PubMed, Science Direct, Scopus, and Google Scholar) was performed for the terms Nigella sativa,
, and
.
At least 8 in silico studies have shown that some compounds of
, including nigelledine, α-hederin, hederagenin, thymohydroquinone, and thymoquinone, had high to moderate affinity with SARS-CoV-2 enzymes and proteins. These compounds may potentially inhibit SARS-CoV-2 replication and
.
These preliminary data of in silico studies propose
as a potential phytotherapy candidate for COVID-19. Further preclinical experimental evidence is required followed by a Phase I clinical trial. (
. 2020; 81XXX-XXX).
These preliminary data of in silico studies propose N sativa as a potential phytotherapy candidate for COVID-19. Further preclinical experimental evidence is required followed by a Phase I clinical trial. (Curr Ther Res Clin Exp. 2020; 81XXX-XXX).Imido complexes of early transition metals are key intermediates in the synthesis of many nitrogen-containing organic compounds. The metal-nitrogen double bond of the imido moiety undergoes [2+2] cycloaddition reactions with various unsaturated organic molecules to form new nitrogen-carbon and nitrogen-heteroatom bonds. This review article focuses on reactivity of the terminal imido complexes of Group 4-6 metals, summarizing their stoichiometric reactions and catalytic applications for a variety of reactions including alkyne hydroamination, alkyne carboamination, pyrrole formation, imine metathesis, and condensation reactions of carbonyl compounds with isocyanates.Nanoscale coordination polymers (NCPs) have shown extraordinary advantages in various research areas due to their structural diversity and multifunctionality. Recently, integration of biomolecules with NCPs received extensive attention and the formed hybrid materials exhibit superior properties over the individual NCPs or biomolecules. In this review, the state-of-the-art of approaches to engineer NCPs with different types of guest biomolecules, such as amino acids, nucleic acids, enzymes and lipids are systematically introduced. Additionally, advanced applications of these biomolecule-NCP composites in the areas of sensing, catalysis, molecular imaging and therapy are thoroughly summarized. Finally, current challenges and prospects are also discussed.A quality by design-based stability indicating HPLC method has been developed for hydroxychloroquine sulfate impurities. The optimized HPLC method can detect and quantify the hydroxychloroquine sulfate and related organic impurities in pharmaceutical solid oral dosage forms. Nowadays, for the quantification of impurities in drug products demands more comprehensive way of analytical method development. The quality by design approach allows the assessment of different analytical parameters and their effects with minimum number of experiments. A highly sensitive and stability indicating RP-HPLC method was developed and evaluated the risk assessment prior to method validation. The chromatographic separation was achieved with X-terra phenyl column (250 × 4.6 mm, 5 µm) using phosphate buffer (0.3 M and pH 2.5). The gradient method flow rate was 1.5 mL min-1 and UV detection was made at 220 nm. The calibration curve of hydroxychloroquine sulfate and related impurities were linear from LOQ to 150% and correlation coefficient was found more than 0.999. The precision and intermediate precision % RSD values were found less than 2.0. In all forced degradation conditions, the purity angle of HCQ was found less than purity threshold. The optimized method found to be specific, accurate, rugged, and robust for determination of hydroxychloroquine sulfate impurities in the solid oral dosage forms. Finally, the method was applied successfully in quality control lab for stability analysis.We report suppression of multiphoton ionization (MPI) of aniline doped large superfluid helium droplets containing over 5 × 106 atoms. In contrast, surface-bound sodium atoms and dimers are readily desorbed and ionized. Adequacy of the experimental conditions is also confirmed from ejection of embedded aniline cations from smaller droplets containing multiple cations, and MPI of gaseous aniline. The photoelectrons have a mean-free-path of less than 1 nm and a thermalization distance of 10 nm. In a droplet with a diameter of over 70 nm, effective charge recombination within the droplet is expected.Development of efficient and cost-effective mass-production techniques for size reduction of high- pressure, high-temperature (HPHT) diamonds with sizes from tens to hundreds of micrometers remains one of the primary goals towards commercial production of fluorescent submicron and nanodiamond (fND). fNDs offer great advantages for many applications, especially in labelling, tracing, and biomedical imaging, owing to their brightness, exceptional photostability, mechanical robustness and intrinsic biocompatibility. This study proposes a novel processing method utilizing explosive fragmentation that can potentially be used for the fabrication of submicron to nanoscale size fluorescent diamond particles. In the proposed method, synthetic HPHT 20 pm and 150 pm microcystalline diamond particles containing color centers are rapidly fragmented in conditions of high explosive detonation. X-ray diffraction and Raman spectroscopy show that the detonation fragmented diamond particles consist of good quality submicron diamonds of ~420-800 nm in size, while fluorescence spectroscopy shows photoluminescence spectra with noticeable changes for large (150 μm) starting microcrystalline diamond particles, and no significant changes in photoluminescence properties for smaller (20 μm) starting microcrystalline diamond particles. The proposed detonation method shows potential as an efficient, cost effective, and industrially scalable alternative to milling for the fragmentation of fluorescent diamond microcrystals into submicron- to nano-size domain.In this study, the structural properties of soot produced in diffusion flames are analyzed to elucidate the formation of mature aggregates from large young particles. Soot samples are generated in a laminar diffusion inverted gravity flame reactor (IGFR) operated on methane, ethane, and ethylene with Ar dilution to reduce the flame temperature. Soot produced in temperature ranges from 1495K-1568 K contains 100nm-300nm particles with (i) isotropic or (ii) multiple core structures, supporting a soot maturation pathway where one young soot particle evolves into a mature fractal aggregate via an internal nucleation route. During the process, these large amorphous particles can form internal voids as the particle loses mass due to pyrolysis or oxidation. Transmission electron microscopy (TEM) shows that young soot aggregates contain a higher fraction of shorter fringes and highly curved aromatics (11% vs. 23%), which is in agreement with their higher organic carbon content (3.3%-5.4% vs. 12.1%-28.8% wt.). Increasing the flame temperature reduces the curvature of polycyclic aromatic hydrocarbons (PAHs) and allows for more efficient layer stacking as indicated by a higher percent of stacked fringes. For these gaseous fuels, carbonization appears to be primarily a function of the flame temperature and independent of the fuel composition.Increasing use of carbon nanotubes (CNTs) in consumer and industrials goods increases their potential release, and subsequent risks to environmental and human health. Therefore, it is becoming ever more important that CNTs are designed to reduce or eliminate hazards and that hazard assessment methodologies are robust. Here, oxygen-functionalized multi-walled CNTs (O-MWCNTs), modified under varying redox conditions, were assessed for toxic potential using the zebrafish (Danio rerio) embryo model. Multiple physicochemical properties (e.g., MWCNT aggregate size, morphology, and rate; surface charge and oxygen concentration; and reactive oxygen species (ROS) generation) were characterized and related to zebrafish embryo mortality through the use of multivariate statistical methods. selleck compound Of these properties, surface charge and aggregate morphology emerged as the greatest predictors of embryo mortality. Interestingly, ROS generation was not significantly correlated to observed mortality, contrary to prior predictions by nanotoxicology researchers. This suggests that the mechanism of MWCNT-induced mortality of embryonic zebrafish is physical, driven by electrostatic and shape effects, both of which are related to nanomaterial aggregation. This raises the importance of rigorously considering aggregation during aqueous-based nanotoxicology assays as nanomaterial aggregation can affect perceived nanomaterial toxicity. As such, future nanotoxicity studies relying on aqueous media must sufficiently consider nanomaterial aggregation.The basic attitude of Chinese law towards wildlife resources is differentiated protection plus rational utilizations. Artificial breeding of terrestrial wildlife was a big business and a way to alleviate poverty, but also raised concerns over wildlife conservation and public health. China's complete ban on the consumption of terrestrial wildlife, whether wild-sourced or artificially bred, was a drastic change of China's legal regime on wildlife conservation and commercial artificial breeding. This change will have impacts on the drafting of a new Biosafety Law and the revision and enforcement of the Wildlife Protection Law, the Husbandry law, the Fisheries Law, and the Animal Epidemic Prevention Law.The COVID-19 pandemic zoonosis has determined extensive lockdowns worldwide that provide an unprecedented opportunity to understand how large-scale shifts of human activities can impact wildlife. We addressed the impacts of the COVID-19 lockdown on wildlife in Italy, the first European country that performed a countrywide lockdown, and identified potentially beneficial and negative consequences for wildlife conservation and management. We combined a qualitative analysis of social media information with field data from multiple taxa, data from citizen science projects, and questionnaires addressed to managers of protected areas. Both social media information and field data suggest that a reduction of human disturbance allowed wildlife to exploit new habitats and increase daily activity. The field data confirmed some positive effects on wildlife conservation, such as an increase in species richness in temporarily less-disturbed habitats, a higher breeding success of an aerial insectivorous bird, and reduction of road-killing of both amphibians and reptiles. Despite some positive effects, our data also highlighted several negative impacts of the COVID-19 crisis on wildlife. The lower human disturbance linked to lockdown was in fact beneficial for invasive alien species. Results from questionnaires addressed to managers of protected areas highlighted that the COVID-19 lockdown interrupted actions for the control of invasive alien species, and hampered conservation activities targeting threatened taxa. Furthermore, the reduction of enforcement could cause a surge of illegal killing of wildlife. The COVID-19 crisis, besides having deep socio-economic impacts, might profoundly affect wildlife conservation, with potentially long-lasting effects.
Read More: https://www.selleckchem.com/products/Gemcitabine-Hydrochloride(Gemzar).html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team