Notes
Notes - notes.io |
entration was recommended at low level, for example around 1.0 g/L, to accelerate or not limit methanogenesis.Continual and accelerating declines in hydrological connectivity threaten ecosystem processes, biodiversity, and services throughout the world. Therefore, there is an increasing demand for user-driven tools that assess hydrological connectivity from an effective perspective. We developed the Connectivity ASsessment Tool 1.0 (CAST1.0), which takes the threshold behaviors of focal ecological indicators into account, allows quantifying effective hydrological connectivity and its regime shift. We illustrate the use of CAST1.0 for the case of Poyang Lake, China. It was found that the response of effective hydrological connectivity to inundation depth, flow velocity, and water temperature follows a dynamic threshold effect. The evaluation of connected objects based on specific niches provides a valuable metric for recognizing potential habitat patches and links. This study provides a sound basis for assessing hydrological connectivity in a meaningful way, promising to provide novel insights into maintaining and restoring biodiversity and associated ecosystem services around the world.Biological impairments have been documented on reefs at two national parks in St. Croix, USVI. Although several water quality parameters have been out of compliance with USVI criteria, whether these parameters or other pollutants are responsible for coral health impacts is unknown. Trace elements quantified in sediment showed four sites at SARI, which is closer than BUIS to settlements and land-derived anthropogenic outflows, had Cu mass fractions above sediment quality guidelines for invertebrate toxicity. Trace elements were also analyzed in the skeleton of threatened elkhorn coral, Acropora palmata, to evaluate potential exposure. Heavy metals (Pb, Zn) were significantly greater in coral skeleton at SARI than BUIS. Cu, Pb, and Zn may be impacting coral health in these parks. Potential anthropogenic sources of these metals were revealed by the coral tissue stable isotope levels (δ13C and δ15N). These findings provide a framework for determining heavy metal impacts on these invaluable reefs.Microplastic abundance, distribution and source characteristics were investigated for the surface seawaters from the Taiwan Strait as well as those of sediments along its west and east coasts. The microplastic abundances were in the range of 28-208 (mean 90) and 10-246 (mean 69) items/kg (d.w.) along the west and east coasts respectively. The higher microplastic abundance on the west coast might be related to the different local economic development, population, land-use and other human activities. Combined with microplastic pollution and socio-economic development, regression analysis results showed that urbanization level is negatively correlated with foams while positively correlated with fibers. This study, as the first report of microplastics in the Taiwan Strait, suggested further research on microplastics cross-strait transportation and the relationship with economic developments.Estuaries in the tropical Gulf of Carpentaria (GOC) in Australia are under increasing pressure from catchment water development, potentially affecting productivity. We examined the potential effect of changes in freshwater inputs on the primary productivity of three estuaries (Flinders, Gilbert and Mitchell Rivers). The addition of nutrients stimulated mudflat primary production in all estuaries at multiple sampling times, suggesting chronic nutrient limitation. All three estuaries were productive with the Flinders estuary being the most productive of the three estuaries, compared to the Gilbert and Mitchell estuaries. This is despite the fact that the Flinders estuary has the shortest period of freshwater flow and more variable flows from year-to-year compared with the other estuaries. This makes the Flinders highly vulnerable to excessive water development. This study suggests that water extraction which significantly reduces freshwater inputs and associated nutrients has the potential to impact on productivity within these estuaries.The Great Barrier Reef (GBR) is threatened by climate change and local pressures, including contaminants in nearshore habitats. This study investigated the combined effects of a GBR-relevant contaminant, the herbicide diuron, under current and two future climate scenarios on the coral Acropora millepora. All physiological responses tested (effective quantum yield (ΔF/Fm'), photosynthesis, calcification rate) were negatively affected with increasing concentrations of diuron. Interactive effects between diuron and climate were observed for all responses; however, climate had no significant effect on ΔF/Fm' or calcification rates. Photosynthesis was negatively affected as the climate scenarios were adjusted from ambient (28.1 °C, pCO2 = 397 ppm) to RCP8.5 2050 (29.1 °C, pCO2 = 680 ppm) and 2100 (30.2 °C, pCO2 = 858 ppm) with EC50 values declining from 19.4 to 10.6 and 2.6 μg L-1 diuron in turn. selleck inhibitor These results highlight the likelihood that water quality guideline values may need to be adjusted as the climate changes.With increasing maritime activities in the proximity of coral reefs, a growing number of manmade structures are becoming available for coral colonisation. Yet, little is known about the sessile community composition of such artificial reefs in comparison with that of natural coral reefs. Here, we compared the diversity of corals and their competitors for substrate space between a centuries-old manmade structure and the nearest natural reef at St. Eustatius, eastern Caribbean. The artificial reef had a significantly lower species richness and fewer competitive interactions than the natural reef. The artificial reef was dominated by a cover of crustose coralline algae and zoantharians, instead of turf algae and fire corals on the natural reef. Significant differences in species composition were also found between exposed and sheltered sites on both reefs. Our study indicates that even a centuries-old manmade reef cannot serve as a surrogate for natural reefs.
Read More: https://www.selleckchem.com/products/sr59230a.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team