Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Cognitive sequelae of COVID-19 including memory and concentration difficulties have been observed in 40-65% of persons who have been hospitalised with COVID-19 and 27-50% of non-hospitalised individuals. The cognitive impairments are associated with reduced work function and quality of life. This review recommends systematic cognition screening at long-COVID clinics using brief and feasible objective cognitive screeners, such as the Screen for Cognitive Impairment in Psychiatry (SCIP) and Trail Making Test B or similar tests with sensitivity to cognitive impairment in young populations.
The aim of this study was to translate and validate into European Portuguese the CAPS-CA-5 (Clinician Administered PTSD Scale for Children and Adolescents), a semi-structured scale for the diagnosis of post-traumatic stress disorder in children and adolescents, according to the DSM-5 criteria.
This study was developed in three stages. In the first stage, the translation and back-translation of CAPS-CA-5 into European Portuguese was carried out. In the second stage, the version obtained in the previous step was subjected to a pre-test. In the third stage, the final version of CAPS-CA-5, the KIDCOPE questionnaires and the Depression, Anxiety and Stress Scale-Children were applied to 101 children who had experienced at least one potentially traumatic event. The children included in this study were between seven and 18 years old and had a follow-up period in a Child Psychiatry or Pediatrics Clinic in one of the three hospitals involved in this project of at least one month.
Regarding the confirmatory factor analysis, our results show that the CAPS-CA-5 is a suitable psychometric instrument to assess the diagnosis and symptoms severity of post-traumatic stress disorder according to DSM-5. Convergent validity was comparable to its original version. Although there were negative relationships with almost all of its clusters, these were not statistically significant when applied with the positive coping strategies of the KIDCOPE. The European Portuguese version of the CAPS-CA-5 showed a good internal consistency (Cronbach's α for the total scale was 0.89).
The European Portuguese version of CAPS-CA-5 has similar psychometric properties to its original version.
The European Portuguese version of CAPS-CA-5 has similar psychometric properties to its original version.The blood-brain barrier (BBB) is an interface between cerebral blood and the brain parenchyma. As a gate keeper, BBB regulates passage of nutrients and exogeneous compounds. Owing to this highly selective barrier, many drugs targeting brain diseases are not likely to pass through the BBB. Thus, a large amount of time and cost have been paid for the development of BBB targeted therapeutics. However, many drugs validated in in vitro models and animal models have failed in clinical trials primarily due to the lack of an appropriate BBB model. Human BBB has a unique cellular architecture. Different physiologies between human and animal BBB hinder the prediction of drug responses. Therefore, a more physiologically relevant alternative BBB model needs to be developed. In this review, we summarize major features of human BBB and current BBB models and describe organ-on-chip models for BBB modeling and their applications in neurological complications. [BMB Reports 2022; 55(5) 213-219].Autism or autism spectrum disorder (ASD) is a behavioral syndrome characterized by persistent deficits in social interaction, and repetitive patterns of behavior, interests, or activities. The gene encoding Methyl-CpG binding protein 2 (MeCP2) is one of a few exceptional genes of established causal effect in ASD. Although genetically engineered mice studies may shed light on how MeCP2 loss affects synaptic activity patterns across the whole brain, such studies are not considered practical in ASD patients due to the overall level of impairment, and are technically challenging in mice. For the first time, we show that hippocampal MeCP2 knockdown produces behavioral abnormalities associated with autism-like traits in rats, providing a new strategy to investigate the efficacy of therapeutics in ASD. Ketamine, an N-Methyl-D-aspartate (NMDA) blocker, has been proposed as a possible treatment for autism. Using the MeCP2 knockdown rats in conjunction with a rat model of valproic acid (VPA)-induced ASD, we examined gene expression and ASD behaviors upon ketamine treatment. We report that the core symptoms of autism in MeCP2 knockdown rats with social impairment recovered dramatically following a single treatment with ketamine. [BMB Reports 2022; 55(5) 238-243].Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic disorder characterized by suprapubic pain and urinary symptoms such as urgency, nocturia, and frequency. The prevalence of IC/BPS is increasing as diagnostic criteria become more comprehensive. Conventional pharmacotherapy against IC/BPS has shown suboptimal effects, and consequently, patients with end-stage IC/BPS are subjected to surgery. The novel treatment strategies should have two main functions, anti-inflammatory action and the regeneration of glycosaminoglycan and urothelium layers. Stem cell therapy has been shown to have dual functions. CFTR modulator Mesenchymal stem cells (MSCs) are a promising therapeutic option for IC/BPS, but they come with several shortcomings, such as immune activation and tumorigenicity. MSC-derived extracellular vesicles (MSC-EVs) hold numerous therapeutic cargos and are thus a viable cell-free therapeutic option. In this review, we provide a brief overview of IC/BPS pathophysiology and limitations of the MSC-based therapies. Then we provide a detailed explanation and discussion of therapeutic applications of EVs in IC/BPS as well as the possible mechanisms. We believe our review will give an insight into the strengths and drawbacks of EV-mediated IC/BPS therapy and will provide a basis for further development. [BMB Reports 2022; 55(5) 205-212].Characterized by abnormal proliferation and migration of vascular smooth muscle cells (VSMCs), neointima hyperplasia is a hallmark of vascular restenosis after percutaneous vascular interventions. Vaccinia-related kinase 1 (VRK1) is a stress adaptionassociated ser/thr protein kinase that can induce the proliferation of various types of cells. However, the role of VRK1 in the proliferation and migration of VSMCs and neointima hyperplasia after vascular injury remains unknown. We observed increased expression of VRK1 in VSMCs subjected to platelet-derived growth factor (PDGF)-BB by western blotting. Silencing VRK1 by shVrk1 reduced the number of Ki-67-positive VSMCs and attenuated the migration of VSMCs. Mechanistically, we found that relative expression levels of β-catenin and effectors of mTOR complex 1 (mTORC1) such as phospho (p)-mammalian target of rapamycin (mTOR), p-S6, and p-4EBP1 were decreased after silencing VRK1. Restoration of β-catenin expression by SKL2001 and re-activation of mTORC1 by Tuberous sclerosis 1 siRNA (siTsc1) both abolished shVrk1-mediated inhibitory effect on VSMC proliferation and migration. siTsc1 also rescued the reduced expression of β-catenin caused by VRK1 inhibition. Furthermore, mTORC1 re-activation failed to recover the attenuated proliferation and migration of VSMC resulting from shVrk1 after silencing β-catenin. We also found that the vascular expression of VRK1 was increased after injury. VRK1 inactivation in vivo inhibited vascular injury-induced neointima hyperplasia in a β-catenin-dependent manner. These results demonstrate that inhibition of VRK1 can suppress the proliferation and migration of VSMC and neointima hyperplasia after vascular injury via mTORC1/β-catenin pathway. [BMB Reports 2022; 55(5) 244-249].The acute response to hypoxia is mainly driven by hypoxiainducible factors, but their effects gradually subside with time. Hypoxia-specific histone modifications may be important for the stable maintenance of long-term adaptation to hypoxia. However, little is known about the molecular mechanisms underlying the dynamic alterations of histones under hypoxic conditions. We found that the phosphorylation of histone H3 at Ser-10 (H3S10) was noticeably attenuated after hypoxic challenge, which was mediated by the inhibition of aurora kinase B (AURKB). To understand the role of AURKB in epigenetic regulation, DNA microarray and transcription factor binding site analyses combined with proteomics analysis were performed. Under normoxia, phosphorylated AURKB, in concert with the repressor element-1 silencing transcription factor (REST), phosphorylates H3S10, which allows the AURKB-REST complex to access the MDM2 proto-oncogene. REST then acts as a transcriptional repressor of MDM2 and downregulates its expression. Under hypoxia, AURKB is dephosphorylated and the AURKB-REST complex fails to access MDM2, leading to the upregulation of its expression. In this study, we present a case of hypoxia-specific epigenetic regulation of the oxygen-sensitive AURKB signaling pathway. To better understand the cellular adaptation to hypoxia, it is worthwhile to further investigate the epigenetic regulation of genes under hypoxic conditions. [BMB Reports 2022; 55(6) 287-292].Defense priming allows plants to enhance their immune responses to subsequent pathogen challenges. Recent reports suggested that acquired resistances in parental generation can be inherited into descendants. Although epigenetic mechanisms are plausible tools enabling the transmission of information or phenotypic traits induced by environmental cues across generations, the mechanism for the transgenerational inheritance of defense priming in plants has yet to be elucidated. With the initial aim to elucidate an epigenetic mechanism for the defense priming in plants, we reassessed the transgenerational inheritance of plant defense, however, could not observe any evidence supporting it. By using the same dipping method with previous reports, Arabidopsis was exposed repeatedly to Pseudomonas syringae pv tomato DC3000 (Pst DC3000) during vegetative or reproductive stages. Irrespective of the developmental stages of parental plants that received pathogen infection, the descendants did not exhibit primed resistance phenotypes, defense marker gene (PR1) expression, or elevated histone acetylation within PR1 chromatin. In assays using the pressure-infiltration method for infection, we obtained the same results as above. Thus, our results suggest that the previous observations on the transgenerational inheritance of defense priming in plants should be more extensively and carefully reassessed. [BMB Reports 2022; 55(7) 342-347].The Wnt/β-catenin signaling plays crucial roles in early development, tissue homeostasis, stem cells, and cancers. Here, we show that RNF152, an E3 ligase localized to lysosomes, acts as a negative regulator of the Wnt/β-catenin pathway during Xenopus early embryogenesis. Overexpression of wild-type (WT) RNF152 inhibited XWnt8-induced stabilization of β-catenin, ectopic expression of target genes, and activity of a Wnt-responsive promoter. Likewise, an E3 ligase-defective RNF152 had repressive effects on the Wnt-dependent gene responses but not its truncation mutant lacking the transmembrane domain. Conversely, knockdown of RNF152 further enhanced the transcriptional responses induced by XWnt8. RNF152 morphants exhibited defects in craniofacial structures and pigmentation. In line with this, the gain-of-RNF152 function interfered with the expression of neural crest (NC) markers, whereas its depletion up-regulated NC formation in the early embryo. Mechanistically, RNF152 inhibits the polymerization of Dishevelled, which is key to Wnt signaling, in an E3 ligase-independent manner.
Here's my website: https://www.selleckchem.com/products/vx-561.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team