Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
For archived cases of previously young healthy individuals where cause of sudden death remains undetermined, formalin fixed paraffin-embedded tissues (FFPE) samples are often the only biological resource available for molecular testing. We aim to ascertain the validity of postmortem molecular analysis of 95 cardiac genes using the FFPE samples routinely processed in the offices of medical examiners - typical fixation time in formalin ranges from days to months. The study was conducted in the College of American Pathologists accredited Molecular Genetics Laboratory within the City of New York Office of Chief Medical Examiner. Twelve cases, with FFPE samples and corresponding non-formalin fixed samples (RNAlater-preserved tissues or bloodstain card), were chosen for testing results comparison. The methods of extracting DNA from FFPE samples using Covaris, Qiagen, and Promega products showed comparable results. The quality of the extracted DNA, the target-enriched DNA libraries of 95 cardiac genes using HaloPlexidence variant calling. In summary, our study showed that postmortem molecular diagnostic testing using FFPE samples routinely processed by the medical examiners should be cautioned, as they are replete with false positive and negative results, particularly when sample fixation time is longer than 8 days. Saving non-formalin fixed samples for high fidelity molecular analysis is strongly encouraged. Published by Elsevier B.V.Cardiovascular diseases are the leading cause of death in the world. Platelets have a major role in cardiovascular events as they bind to the damaged endothelium activating and forming thrombi. Although some hydroquinone scaffold-containing compounds have known antiplatelet activities, currently there is a lack of evidence on the antiplatelet activity of hydroquinones carrying electron attractor groups. In this work, we evaluate the antiplatelet effect of a series of ortho-carbonyl hydroquinone derivatives on cytotoxicity and function of human platelets, using collagen and thrombin receptor activator peptide 6 (TRAP-6) as agonists. Our structure-activity relationship study shows that gem-diethyl/methyl substitutions and the addition/modifications of the third ring of ortho-carbonyl hydroquinone scaffold influence on the selective index (IC50 TRAP-6/IC50 Collagen) and the inhibitory capacity of platelet aggregation. Compounds 3 and 8 inhibit agonist-induced platelet aggregation in a non-competitive manner with IC50 values of 1.77 ± 2.09 μM (collagen) and 11.88 ± 4.59 μM (TRAP-6), respectively and show no cytotoxicity. Both compounds do not affect intracellular calcium levels and mitochondrial bioenergetics. Consistently, they reduce the expression of P-selectin, activation of glycoprotein IIb/IIIa, and release of adenosine triphosphate and CD63 from platelet. Our findings may be used for further development of new drugs in platelet-related thrombosis diseases. KDM5B (also known as PLU-1 and JARID1B) is 2-oxoglutarate and Fe2+ dependent oxygenase that acts as a histone H3K4 demethylase, which is a key participant in inhibiting the expression of tumor suppressors as a drug target. Here, we present the discovery of pyrazole derivatives compound 5 by structure-based virtual screening and biochemical screening with IC50 of 9.320 μM against KDM5B, and its subsequent optimization to give 1-(4-methoxyphenyl)-N-(2-methyl-2-morpholinopropyl)-3-phenyl-1H-pyrazole-4-carboxamide (27 ab), a potent KDM5B inhibitor with IC50 of 0.0244 μM. In MKN45 cells, compound 27 ab can bind and stabilize KDM5B and induce the accumulation of H3K4me2/3, bona fide substrates of KDM5B, while keep the amount of H3K4me1, H3K9me2/3 and H3K27me2 without change. Further biological study also indicated that compound 27 ab is a potent cellular active KDM5B inhibitor that can inhibit MKN45 cell proliferation, wound healing and migration. In sum, our finding gives a novel structure for the discovery of KDM5B inhibitor and targeting KDM5B may be a new therapeutic strategy for gastric cancer treatment. OBJECTIVE The brain's inflammatory reaction to traumatic brain injury (TBI) generally peaks between 24 and 48 h after injury. This inflammatory cascade can be neuroprotective or may mediate secondary brain injury beyond the initial TBI. Therefore, circulating inflammatory markers may be useful for predicting outcomes in pediatric TBI. The goal of this study was to determine whether elevations in peripheral blood neutrophil-to-lymphocyte ratios (NLRs) are associated with adverse outcomes in pediatric TBI patients. PATIENTS AND METHODS 188 pediatric patients (0-18 years) presenting to our institution with TBI from 2007 to 2017 were retrospectively reviewed. Absolute neutrophil and lymphocyte counts from a complete blood count (CBC) were used to calculate NLRs on admission ( less then 12 h) and approximately 24, 48, and 72 h after injury. Data points included Glasgow Coma Scale (GCS) on admission, presence of post-traumatic amnesia (PTA), loss of consciousness (LOC), and Glasgow Outcome Scale Extended Pediatric Version (GOS-E Peds) with a median outcome span of 86 days. RESULTS A one-way ANOVA demonstrated statistically significant differences in NLR at 24 h (p = 0.004) and 48 h (p=0.003) among patients stratified by GOS-E Peds. No significant differences in NLR were observed at any time point based on GCS or PTA. Patients who experienced LOC had a significantly higher NLR on admission (p=0.013) and at 24 h (p less then 0.001) than those who did not. CONCLUSION In this study, relatively higher NLRs at 24 and 48 h post-TBI were associated with worse outcomes in pediatric patients. This suggests that NLR may be a useful and cost-effective outcome predictor in pediatric TBI as well as a possible future target for therapeutic intervention, warranting larger prospective trials. OBJECTIVE To investigate whether the efficacy of the lumbar-peritoneal (LP) shunt is sustainable, we measured the outcomes of patients with idiopathic NPH (iNPH) preoperatively and postoperatively. PATIENTS AND METHODS We retrospective reviewed records of 58 patients with iNPH from 2013 to 2015. Exclusion of 7 patients expired, 1 patient shunt infection, and 8 patients was loss of follow-up. In the remaining 42 patients, the mood, talking response, movement, attention, recalling memory, and mini-mental state examination (MMSE), representing patient outcomes, were measured. All of whom were follow-up for 3 years. RESULTS Mood (1.91 ± 0.30), talking response (1.98 ± 0.15), movement (1.71 ± 0.51), attention (1.95 ± 0.22), and recalling memory (1.86 ± 0.35) were significantly improved after surgery (1 week;p less then 0.0001). However, the indicators significantly declined after 3 years (mood 0.31 ± 0.52, talking response 0.50 ± 0.59, movement 0.17 ± 0.38, attention 0.40 ± 0.59, recalling memory 0.21 ± 0.42). The MMSE was also significantly improved after 3 months of surgery (17.9 5 ± 2.80 vs. 25.02 ± 3.36; p less then 0.0001). However, it declined after 3 years (17.83 ± 3.66; p = 0.83). CONCLUSION The iNPH is considered potentially reversible. Our data supported that the LP shunt was efficient in the short term. However, the neurological degeneration was still progressive. As to metallosilicate zeolites, ions with larger size such as Ta5+ in the gels greatly retarded their crystallization during the hydrothermal synthesis, affording long-winded synthesis periods, up-limited framework-substituted metal contents, or even frustrated outcome. An efficient hydrothermal synthesis strategy for metallosilicate, in this case of Ta framework-substituted *BEA zeolite, via structural reconstruction was proposed to stride the gap. EGFR inhibitor The Ta content in our developed Ta-Beta-Re-50 zeolite achieved up to 5.48 % (Si/Ta = 52), breaking through the limitation of Ta contents for conventional method (Si/Ta > 100). Additionally, this Ta-Beta-Re zeolite possessed nanosized crystals (20-40 nm) and short crystallization time (8 h), significantly improving space-time yields of practical zeolite production. Through spectroscopic study, it was confirmed that the existence of zeolite structural units intensively facilitated the formation of nucleation and crystal growth. This innovative Ta-Beta zeolite demonstrated high catalytic performances for oxidation desulfurization, far outperforming traditional fluoride-mediated Ta-Beta-F, which was ascribed to its excellent diffusion properties and incredible high isolated Ta contents. Additionally, the catalytic performance of Ta-Beta-Re could be regenerated after simple calcination and the deactivation may be caused by pore blocking of organics. This work provides a new method for rationally design and construction of metallosilicate materials with high activity for catalytic oxidation applications, which can bridge the conceptual and technical gap between periodic trends and zeolite material synthesis. In this study, lincomycin residue (LR, a type of antibiotic mycelial residue) derived hydrochar samples (LR-HCs) were obtained from hydrothermal carbonization (HTC), and pyrolysis applied to these LR-HCs to produce activated pyrolyzed samples (LR-APs). Transformation of phosphorus (P) and nitrogen (N) species during HTC and pyrolysis was of primary interest and characterized by several techniques. Nitrogen content of dry LR was calculated by elemental analysis, being 7.91 wt. %, decreasing to 2.51 after HTC and 1.12 wt. % after concesutive HTC and pyrolysis. FT-IR analysis provided evidence for amine groups in LR samples. XPS analysis described N species (Pyridinic-N, Amine-N, Protein-N, Pyrrolic-N, and Quaternary-N) and P species (ortho-P/pyro-P and Ar-P) in LR samples, effectively. Sequential extraction showed that the HTC and pyrolysis changed the proportion of the P species from labile (P-NaHCO3 and P-NaOH) to stable ones (P-residue). Utilization and suitability of as-prepared LR-HCs and LR-APs for heavy metal Pb (II) immobilization show promising results. To help understand immobilization process, kinetic (pseudo-1st-order and pseudo-2nd-order) and isotherm (Freundlich) models were tested and verified. Results confirmed that P and N species were transformed during HTC and pyrolysis and that these processes lead to an advantageous effect on Pb (II) removal from solution. Cadmium is toxic to humans, although Cd-based quantum dots exerts less toxicity. Human hepatocellular carcinoma cells (HepG2) and macrophages (THP-1) were exposed to ionic Cd, Cd(II), and cadmium sulfide quantum dots (CdS QDs), and cell viability, cell integrity, Cd accumulation, mitochondrial function and miRNome profile were evaluated. Cell-type and Cd form-specific responses were found CdS QDs affected cell viability more in HepG2 than in THP-1; respective IC20 values were ∼3 and ∼50 μg ml-1. In both cell types, Cd(II) exerted greater effects on viability. Mitochondrial membrane function in HepG2 cells was reduced 70 % with 40 μg ml-1 CdS QDs but was totally inhibited by Cd(II) at corresponding amounts. In THP-1 cells, CdS QDs has less effect on mitochondrial function; 50 μg ml-1 CdS QDs or equivalent Cd(II) caused 30 % reduction or total inhibition, respectively. The different in vitro effects of CdS QDs were unrelated to Cd uptake, which was greater in THP-1 cells. For both cell types, changes in the expression of miRNAs (miR-222, miR-181a, miR-142-3p, miR-15) were found with CdS QDs, which may be used as biomarkers of hazard nanomaterial exposure.
Here's my website: https://www.selleckchem.com/EGFR(HER).html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team