Notes
Notes - notes.io |
Skeletal muscle fiber types are important determinants of the contractile properties of muscle fibers, such as fatigue resistance and shortening velocity. Yet little is known about how jaw-adductor fiber types correlate with feeding behavior in primates. Compared with chimpanzees and bonobos, gorillas spend a greater percentage of their daily time feeding and shift to herbaceous vegetation when fruits are scarce. selleck We thus used the African apes to test the hypothesis that chewing with unusually high frequency is correlated with the expression in the jaw adductors of a high proportion of type 1 (slow, fatigue-resistant) fibers at the expense of other fiber types (the Frequent Recruitment Hypothesis). We used immunohistochemistry to determine the presence and distribution of the four major myosin heavy chain (MHC) isoforms in the anterior superficial masseter (ASM), superficial anterior temporalis, and deep anterior temporalis of four Gorilla gorilla, two Pan paniscus, and four Pan troglodytes. Serial sections were stained against slow (MHC-1/-α-cardiac) and fast (MHC-2/-M) fibers. Fibers were counted and scored for staining intensity, and fiber cross-sectional areas (CSAs) were measured and used to estimate percentage of CSA of each MHC isoform. Hybrid fibers accounted for nearly 100% of fiber types in the masseter and temporalis of all three species, resulting in three main hybrid phenotypes. As predicted, the gorilla ASM and deep anterior temporalis comprised a greater percentage of CSA of the slower, fatigue-resistant hybrid fiber type, significantly so for the ASM (p = 0.015). Finally, the results suggest that fiber phenotype of the chewing muscles contributes to behavioral flexibility in ways that would go undetected in paleontological studies relying solely on morphology of the bony masticatory apparatus.
Spigelian hernia is an uncommon congenital or acquired defect in the transversus abdominis aponeurosis with non-specific symptoms posing a diagnostic challenge. There is a paucity of radiology literature on imaging findings of Spigelian hernia. The objective of this study is to explore the role of MDCT in evaluating Spigelian hernia along with clinical and surgical implications.
In this IRB approved, HIPAA compliant retrospective observational analysis MDCT imaging findings of 43 Spigelian hernias were evaluated by two fellowship-trained radiologists. Imaging features evaluated were presence of Spigelian hernia, laterality, relation to "hernia belt" (between 0 and 6cm cranial to an imaginary axial line between both anterior superior iliac spines), the hernia neck and sac sizes, hernia content, and other coexistent hernias (umbilical, incisional, inguinal). Patient's demographics (age, gender, BMI, conditions with increased intra-abdominal pressure) were also recorded for any correlation.
60% (26/43) of physical examination.
Most of the Spigelian hernia occurred below the traditionally described hernia belt and the majority are of interparietal subtype that can be best diagnosed with MDCT in contrast to physical examination.The PI3K/AKT pathway is an intracellular signaling pathway with an indispensable impact on cell cycle control. This pathway is functionally related with cell proliferation, cell survival, metabolism, and quiescence. The crucial role of this pathway in the development of cancer has offered this pathway as a target of novel anti-cancer treatments. Recent researches have demonstrated the role of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in controlling the PI3K/AKT pathway. Some miRNAs such as miR-155-5p, miR-328-3p, miR-125b-5p, miR-126, miR-331-3p and miR-16 inactivate this pathway, while miR-182, miR-106a, miR-193, miR-214, miR-106b, miR-93, miR-21 and miR-103/107 enhance activity of this pathway. Expression levels of PI3K/AKT-associated miRNAs could be used to envisage the survival of cancer patients. Numerous lncRNAs such as GAS5, FER1L4, LINC00628, PICART1, LOC101928316, ADAMTS9-AS2, SLC25A5-AS1, MEG3, AB073614 and SNHG6 interplay with this pathway. Identification of the impact of miRNAs and lncRNAs in the control of the activity of PI3K/AKT pathway would enhance the efficacy of targeted therapies against this pathway. Moreover, each of the mentioned miRNAs and lncRNAs could be used as a putative therapeutic candidate for the interfering with the carcinogenesis. In the current study, we review the role of miRNAs and lncRNAs in controlling the PI3K/AKT pathway and their contribution to carcinogenesis.Patients with diabetes commonly experience hyposalivation, which induces discomfort in eating, swallowing, dryness, smell, and speaking, as well as increases the incidence of periodontal disease. Dipeptidyl peptidase-4 (DPP4) inhibitors are frequently used as antidiabetic drugs that lower glucose levels by utilizing similar mechanisms; however, additional protective functions of each gliptin have been discovered. In this study, the protective roles of gemigliptin, a DPP4 inhibitor, against salivary dysfunction under diabetic conditions were investigated. Streptozotocin-induced diabetic rats received gemigliptin 10 mg/kg or 100 mg/kg via oral gavage for 3 weeks. The weights of salivary gland tissues, saliva secretion, and antioxidant capacity in salivary glands were reduced after diabetes induction, but were significantly preserved following gemigliptin treatment. In salivary gland analysis, expression of apoptotic proteins, as well as amylase and aquaporin-5 (AQP5) protein expression, were increased following gemigliptin treatment. Furthermore, the number of TUNEL-positive cells decreased after gemigliptin treatment. Therefore, gemigliptin has protective roles against salivary dysfunction observed in diabetes, mediated via antioxidant, anti-apoptotic, and salivary secretion mechanisms. These results may help in selecting a suitable drug for patients with diabetes experiencing salivary dysfunction.Depression is the second most common disease burden worldwide that threatens human health; however, mechanisms underlying the development of depression remain unclear. A family of non-coding RNAs, circular RNAs (circRNAs), has been shown to play a critical role in the development of depression by competitively binding to certain microRNAs (miRNA) and regulating the expression of target genes. Behavioral symptoms of depression may be ameliorated by knockdown or overexpression of depression-associated circRNAs. In this review, we summarized important functions of circRNAs and analyzed the most recent findings regarding the expression and biological function of circRNAs in depression. We discussed novel circRNA-based strategies to illuminate potential therapeutic targets that may aid in the development of new treatments for depression.
My Website: https://www.selleckchem.com/products/tas-102.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team