Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Gelatin has emerged as a biocompatible polymer with high printability in scaffold-based tissue engineering. The aim of the current study was to investigate the potential of genipin-crosslinked 3D printed gelatin scaffolds for temporomandibular joint (TMJ) cartilage regeneration. Crosslinking with genipin increased the stability and mechanical properties, without any cytotoxic effects. Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSC) on the scaffolds were compared to cell pellets and spheres. Although hBMSC seeded scaffolds showed a lower expression of chondrogenesis-related genes compared to cell pellets and spheres, they demonstrated a significantly reduced expression of collagen (COL) 10, suggesting a decreased hypertrophic tendency. After 21 days, staining with Alcian blue and immunofluorescence for SOX9 and COL1 confirmed the chondrogenic differentiation of hBMSC on genipin-crosslinked gelatin scaffolds. In summary, 3D printed gelatin-genipin scaffolds supported the viability, attachment and chondrogenic differentiation of hBMSC, thus, demonstrating potential for TMJ cartilage regeneration applications.The regeneration cycle of expensive cofactor, NAD(P)H, is of paramount importance for the bio-catalyzed redox reactions. Here a ZrO2supported bimetallic nanocatalyst of gold-palladium (Au-Pd/ZrO2) was prepared to catalyze the regeneration of NAD(P)H without using electron mediators and extra energy input. Over 98% of regeneration efficiency can be achieved catlyzed by Au-Pd/ZrO2using TEOA as the electron donor. Mechanism study showed that the regeneration of NAD(P)H took place through a two-step process Au-Pd/ZrO2nanocatalyst first catalyzed the oxidation of triethanolamine (TEOA) to glycolaldehyde (GA), then the generated GA induced the non-catalytic reducing of NAD(P)+to NAD(P)H under an alkaline environment maintained by TEOA. This two-step mechanism enables the decoupling of the regeneration of NAD(P)H in space and time into a catalytic oxidation and non-catalytic reducing cascade process which has been further verified using a variety of electron donors. selleck inhibitor The application significance of this procedure is further demonstrated both by the favorable stability of Au-Pd/ZrO2nanocatalyst in 5 successive cycles preserving over 90% of its original activity, and by the excellent performance of the regenerated NADH as the cofactor in the catalytic hydrogenation of acetaldehyde using an ethanol dehydrogenase.Surface chemistry control is a key means to improve substrate selectivity and enhance catalytic activity of nanozymes, a kind of novel artificial enzymes. Herein, we demonstrated that apart from chemical properties of functional groups, their spatial distance to the catalytic sites is also very important to improve the catalytic performance of nanozymes. Using cetyltrimethylammonium bromide (CTAB) coated gold nanorods (AuNR) as the example, we showed that cysteine (Cys) surface modification can greatly enhance the peroxidase activity of AuNR for the oxidation of substrate 3,3',5,5'-tetramethylbenzidine (TMB). By using cysteine derivatives, the key role of the carboxylic group in cysteine is revealed in improving substrate binding and activity enhancement. The electrostatic interactions of carboxylic groups from adsorbed cysteine molecules with protonated amino groups of TMB bring TMB molecules to the surface Au active sites and thus markedly increase catalytic activity. In contrast, despite having two carboxylic groups, glutathione (GSH) surface modification only leads to quite limited improvement of catalytic activity. We speculated that due to large molecular size of GSH, the spatial distance between TMB-GSH and Au is larger than that between TMB-Cys and Au. Furthermore, Raman characterization indicated that at high Cys coverage, they form patches on rod surface via zwitterionic interactions, which may give additional benefits by decreasing the steric hindrance of TMB diffusion to surface Au atom sites. link2 In all, our study highlights the importance of fine surface tuning in the design of nanozymes.Neural electrodes are primary functional elements of neuroelectronic devices designed to record neural activity based on electrochemical signals. These electrodes may also be utilized for electrically stimulating the neural cells, such that their response can be simultaneously recorded. In addition to being medically safe, the electrode material should be electrically conductive and electrochemically stable under harsh biological environments. Mechanical flexibility and conformability, resistance to crack formation and compatibility with common microfabrication techniques are equally desirable properties. Traditionally, (noble) metals have been the preferred for neural electrode applications due to their proven biosafety and a relatively high electrical conductivity. Carbon is a recent addition to this list, which is far superior in terms of its electrochemical stability and corrosion resistance. Carbon has also enabled 3D electrode fabrication as opposed to the thin-film based 2D structures. One of carbon's ystems engineers and carbon scientists to enable active and comprehensive efforts directed towards carbon-based neuroelectronic device fabrication.Increasing the specific surface area and the amount of doping heteroatoms is an effective means to improve the electrochemical properties of carbon nanotubes (CNTs). The usual activation method makes it difficult for the retention of the heteroatoms while enlarging the specific surface area, and it can be found from literatures that specific surface area and S-content of carbon-based electrode materials are mutually exclusive. Here, CNTs with high specific surface area and sulfur content are constructed by simple activation of sulfonated polymer nanotubes with KHCO3, and the excellent electrochemical performance can be explained by the following points first, KHCO3 can be decomposed into K2CO3, CO2 and H2O during the activation process. link3 The synergistic action of physical activation (CO2 and H2O) and chemical activation (K2CO3) equips the electrode material with high specific surface area of 1840 m2 g-1 and hierarchical micro/mesopores, which is beneficial to its double-layer capacitance. Second, compared with reported porous CNTs prepared by chemical activation (KOH) or physical activation (CO2 or H2O), the mild activator KHCO3 makes the sulfur content at a high level of 4.6 At%, which is very advantageous for high pseudocapacitance performance.A novel tissue engineering strategy using 3D bio-print technology has become a promising therapeutic method for acute myocardial infarction (AMI) in an animal model. However, the application of 3D bio-printed tissue remains limited due to poor graft survival. Therefore, it is a scientific priority to enhance graft survival by precisely adjusting the 3D environment of encapsulated cells. In this study, novel transplantable 3D cardiac mesh (cMesh) tissue with a porous mesh structure was presented using human cardiomyocytes, human cardiac fibroblasts, and gelatin-methacryloyl-collagen hydrogel. Cardiomyocytes and cardiac fibroblasts were well spreaded. The cardiomyocytes were connected with a gap junction channel in bio-printed cMesh and a 3D cardiac patch with an aggregated structure. Porous cMesh demonstrated structural advantages by increased phosphorylation of mTOR, AKT, and ERK signals associated with cell survival. Transplanted cMesh in rats with AMI improved long-term graft survival, vessel formation, and stabilization, reduced fibrosis, increased left ventricle thickness, and enhanced cardiac function. Our results suggest that porous cMesh provides structural advantages and a positive therapeutic effect in an AMI animal model.Near-field electrospinning (NFES) is a direct fiber writing sub-technique derived from traditional electrospinning (TES) by reducing the air gap distance to the magnitude of millimeters. In this paper, we demonstrate a NFES device designed from a commercial 3D printer to semi-stably write polydioxanone (PDO) microfibers. The print head was then programmed to translate in a stacking grid pattern, which resulted in a scaffold with highly aligned grid fibers that were intercalated with low density, random fibers. As the switching process can be considered random, increasing the grid size results in both a lower density of fibers in the center of each grid cell as well as a lower density of 'rebar-like' stacked fibers. These scaffolds resulted in tailorable as well as greater surface pore sizes as given by scanning electron micrographs and 3D permeability as indicated by fluorescent microsphere filtration compared to TES scaffolds of the same fiber diameter. Furthermore, ultimate tensile strength, percent elongation, yield stress, yield elongation, and Young's modulus were all tailorable compared to the static TES scaffold characterization. Lastly, the innate immune response of neutrophil extracellular traps was attenuated on NFES scaffolds compared to TES scaffolds. These results suggest that this novel NFES scaffold architecture of PDO can be highly tailored as a function of programming for a variety of biomedical and tissue engineering applications.This paper is a review on the combination between Helium Ion Microscopy (HIM) and Secondary Ion Mass Spectrometry (SIMS), which is a recently developed technique that is of particular relevance in the context of the quest for high-resolution high-sensitivity nano-analytical solutions. We start by giving an overview on the HIM-SIMS concept and the underlying fundamental principles of both HIM and SIMS. We then present and discuss instrumental aspects of the HIM and SIMS techniques, highlighting the advantage of the integrated HIM-SIMS instrument. We give an overview on the performance characteristics of the HIM-SIMS technique, which is capable of producing elemental SIMS maps with lateral resolution below 20 nm, approaching the physical resolution limits, while maintaining a sub-nanometric resolution in the secondary electron microscopy mode. In addition, we showcase different strategies and methods allowing to take profit of both capabilities of the HIM-SIMS instrument (high-resolution imaging using secondary electrons and mass filtered secondary sons) in a correlative approach. Since its development HIM-SIMS has been successfully applied to a large variety of scientific and technological topics. Here, we will present and summarise recent applications of nanoscale imaging in materials research, life sciences and geology.The pellet formation has been regarded as a golden standard forin vitrochondrogenic differentiation. However, a spatially inhomogeneous chondrogenic microenvironment around a pellet resulted from the use of a traditional impermeable narrow tube, such as the conical tube, undermines the differentiation performance and therapeutic potential of differentiated cartilage pellet in defective articular cartilage treatment. To address this drawback, a perichondrium-inspired permeable nanofibrous tube (PINaT) well with a nanofibrous wall permeable to gas and soluble molecules is proposed. The PINaT well was fabricated with a micro deep drawing process where a flat thin nanofibrous membrane was transformed to a 3.5 mm deep tube well with a ∼50µm thick nanofibrous wall. Similar toin vivoperichondrium, the PINaT well was found to allow oxygen and growth factor diffusion required for chondrogenic differentiation across the entire nanofibrous wall. Analyses of gene expressions (COL2A1, COL10A1, ACAN, and SOX9), proteins (type II and X collagen), and glycosaminoglycans contents were conducted to assess the differentiation performance and clinical efficacy of differentiated cartilage pellet.
Homepage: https://www.selleckchem.com/products/liproxstatin-1.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team