Notes
![]() ![]() Notes - notes.io |
The high-uniformity Ag NDs selectors offer great potential in the fabrication of large-scale 1S1R crossbar arrays for future memory and neuromorphic computing applications.It is very desirable to develop advanced sustainable biomedical materials with superior biosafety and bioactivity for clinical applications. Herein, biomass-derived multilayer-structured absorbable microparticles (MQ x T y ) composed of starches and plant polyphenols are readily constructed for the safe and effective treatment of bone defects with intractable bleeding by coating multiple layers of quaternized starch (Q+) and tannic acid onto microporous starch microparticles via facile layer-by-layer assembly. MQ x T y microparticles exhibit efficient degradability, low cytotoxicity, and good blood compatibility. Among various MQ x T y microparticles with distinct Q+/T- double layers, MQ2T2 with outmost polyphenol layer possess the unique properties of platelet adhesion/activation and red blood cell aggregation, resulting in the best hemostatic performance. In a mouse cancellous-bone-defect model, MQ2T2 exhibits the favorable hemostatic effect, low inflammation/immune responses, high biodegradability, and promoted bone repair. A proof-of-concept study of beagles further confirms the good performance of MQ2T2 in controlling intractable bleeding of bone defects. The present work demonstrates that such biomass-based multilayer-structured microparticles are very promising biomedical materials for clinical use.The participation of lattice oxygen in the oxygen evolution reaction (OER) process has been proved to be faster in kinetics than the mechanisms where only metal is involved, although activating the lattice oxygen in the traditional rigid structures remains a big challenge. In this work, efforts are devoted to exploring a new flexible structure that is competent in providing large amounts of oxygen vacancies as well as offering the freedom to manipulate the electronic structure of metal cations. This is demonstrated by anchoring low valence state Co at high valence state Nb sites in the tetragonal tungsten bronze (TTB)-structured Sr0.5Ba0.5Nb2- x Co x O6-δ , with different ratios of Co to Nb to optimize the Co substitution proportion. It is found that the occupation of Co in the Nb5+ sites gives rise to the generation of massive surface oxygen vacancies (Ovac), while Co itself is stabilized in Co2+ by adjacent Ovac. The coexistence of Ovac and LS Co2+ enables an oxygen intercalation mechanism in the optimal SBNC45 with specific activity at 1.7 V versus reversible hydrogen electrode that is 20 times higher than for the commercial IrO2. This work illuminates an entirely new avenue to rationally design OER electrocatalysts with ultrafast kinetics.Despite considerable efforts, the properties that drive the cytotoxicity of engineered nanomaterials (ENMs) remain poorly understood. Here, the authors inverstigate a panel of 31 ENMs with different core chemistries and a variety of surface modifications using conventional in vitro assays coupled with omics-based approaches. Cytotoxicity screening and multiplex-based cytokine profiling reveals a good concordance between primary human monocyte-derived macrophages and the human monocyte-like cell line THP-1. Proteomics analysis following a low-dose exposure of cells suggests a nonspecific stress response to ENMs, while microarray-based profiling reveals significant changes in gene expression as a function of both surface modification and core chemistry. Pathway analysis highlights that the ENMs with cationic surfaces that are shown to elicit cytotoxicity downregulated DNA replication and cell cycle responses, while inflammatory responses are upregulated. These findings are validated using cell-based assays. Notably, certain small, PEGylated ENMs are found to be noncytotoxic yet they induce transcriptional responses reminiscent of viruses. In sum, using a multiparametric approach, it is shown that surface chemistry is a key determinant of cellular responses to ENMs. The data also reveal that cytotoxicity, determined by conventional in vitro assays, does not necessarily correlate with transcriptional effects of ENMs.Capacitive deionization (CDI) is an emerging desalination technology for effective removal of ionic species from aqueous solutions. Compared to conventional CDI, which is based on carbon electrodes and struggles with high salinity streams due to a limited salt removal capacity by ion electrosorption and excessive co-ion expulsion, the emerging Faradaic electrodes provide unique opportunities to upgrade the CDI performance, i.e., achieving much higher salt removal capacities and energy-efficient desalination for high salinity streams, due to the Faradaic reaction for ion capture. This article presents a comprehensive overview on the current developments of Faradaic electrode materials for CDI. Here, the fundamentals of Faradaic electrode-based CDI are first introduced in detail, including novel CDI cell architectures, key CDI performance metrics, ion capture mechanisms, and the design principles of Faradaic electrode materials. selleck chemicals llc Three main categories of Faradaic electrode materials are summarized and discussed regarding their crystal structure, physicochemical characteristics, and desalination performance. In particular, the ion capture mechanisms in Faradaic electrode materials are highlighted to obtain a better understanding of the CDI process. Moreover, novel tailored applications, including selective ion removal and contaminant removal, are specifically introduced. Finally, the remaining challenges and research directions are also outlined to provide guidelines for future research.Lithium (Li) is a promising battery anode because of its high theoretical capacity and low reduction potential, but safety hazards that arise from its continuous dendrite growth and huge volume changes limit its practical applications. Li can be hosted in a framework material to address these key issues, but methods to encage Li inside scaffolds remain challenging. The melt infusion of molten Li into substrates has attracted enormous attention in both academia and industry because it provides an industrially adoptable technology capable of fabricating composite Li anodes. In this review, the wetting mechanism driving the spread of liquefied Li toward a substrate is discussed. Following this, various strategies are proposed to engineer stable Li metal composite anodes that are suitable for liquid and solid-state electrolytes. A general conclusion and a perspective on the current limitations and possible future research directions for constructing composite Li anodes for high-energy lithium metal batteries are presented.
Website: https://www.selleckchem.com/products/Gefitinib.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team